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ABSTRACT

Implicit finite-difference (FD) migration is unconditionally
stable and is popular in handling strong velocity variations,
but its extension to strongly transversely anisotropic media with
vertical symmetric axis media is difficult. Traditional local op-
timizations generate the optimized coefficients for each pair of
Thomsen anisotropy parameters independently, which can de-
grade results substantially for large anisotropy variations and
lead to a huge table. We developed an implicit FD method using
the analytic Taylor-series expansion and used a global optimi-
zation scheme to improve its accuracy for wide phase angles.
We first extended the number of the constant coefficients; then
we relaxed the coefficient of the time-delay extrapolation term
by tuning a small factor such that error is less than 0.1%. Finally,
we optimized the constant coefficients using a simulated anneal-
ing algorithm by constraining that all the error functions on a

fine grid of the whole anisotropic region did not exceed
0.5% simultaneously. The extended number of the constant
coefficients and the relaxed coefficient greatly enhanced the
flexibility of matching the dispersion relation and significantly
improved the ability of handling strong anisotropy over a much



problems (Etgen, 1994). In contrast, implicit finite-difference (FD)
methods are attractive because of their unconditional stability
(Claerbout, 1985); thus, they can be safely used in imaging complex
media with wide-angle structures. Furthermore, the implicit FD
methods are good at handling strong velocity variations. Therefore,
implicit FD methods received increased attention recently in ima-
ging VTI media, either as independent methods or as high-order
corrections to the phase-shift method (Ristow, 1999; Han and
Wu, 2005; Zhang et al., 2005b; Hua et al., 2006; Fei and Liner,

2008; Bakker, 2009;



with the generally used least-squares approach, on a fine grid over a
wide range of Thomsen anisotropy parameters. As a global optimi-
zation scheme, our scheme only outputs a unique group of opti-
mized coefficients for each order of the implicit FD method.
Although we also obtain the optimized coefficients by matching
the VTI dispersion relation as in Shan (2009), our optimized coef-
ficients are perfectly safe to each pair of possible Thomsen aniso-
tropy parameters within any practical range, no matter whether for
weak, strong, extreme cases, or for any subregion. Our globally op-
timized coefficients enable the second-order FD method to be ac-
curate up to 58°; whereas the unoptimized method is only accurate
to about 36°. For the fourth-order FD method, using our globally
optimized coefficients, the accuracy in phase angle is up to 77°
as opposed to an accuracy of 53° for the unoptimized method.

FD SCHEME USING TAYLOR-SERIES EXPANSION

The downward extrapolation wave equation for 2D VTI media in
the frequency domain is given by (Alkhalifah, 1998, 2000; Shan,
2009)
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where v ≡ vðx; zÞ is the phase velocity of the qP-wave in the vertical
direction, ε and δ are Thomsen anisotropy parameters (Thomsen,
1986), u2 ≡ v2k2x∕ω2, ω is the circular frequency, i ¼ ffiffiffiffiffiffi
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is the
imaginary unit, and P ≡ Pðx; z;ωÞ is the wavefield in the frequency
domain. The vertical wavenumber kz can be expanded in an Nth-
order Taylor series as follows:
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where λ ≡ ð1þ 2δÞ and η ≡ 2ðε − δÞ.
Equation 3 corresponds to a high-order FD scheme that is extre-

mely difficult to handle, thus, we should limit the highest order of u
to be two using the following cascaded form (Ma, 1982; Claerbout,
1985)
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− · · ·

�
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Using the method of indeterminate coefficients (Ma, 1982;
Ristow and Rühl, 1994; Fei and Liner, 2008), we can represent

the coefficients of equation 5 (i.e., α1; β1; α2; β2; · · · ) using
t1 ∼ tN . For the second-order FD method (i.e., N ¼ 2),
α1 ¼ 0.5λ and β1 ¼ 0.25λ þ η. For the fourth-order FD method
(i.e., N ¼ 4), α1 ¼ 0.361803340λ, β1 ¼ 3.05572809λ þ η,
α2 ¼ 0.13819660λ, and β2 ¼ 2.61803399λ þ η.

According to the relation ∂2∕∂x2 ⇔ −k2x, the fourth-order FD
scheme can be decomposed into three cascaded equations

∂P
∂z

¼ iω
v
P; (6)

∂P
∂z

¼ iα1
v
ω

∂2
∂x2

1þ β1
v2

ω2
∂2
∂x2

P; (7)

and

∂P
∂z

¼ iα2
v
ω

∂2
∂x2

1þ β2
v2

ω2
∂2
∂x2

P: (8)

The second-order FD scheme only includes equations 6 and 7.

GLOBAL OPTIMIZATION SCHEME

We can optimize the constant coefficients of equation 5 to im-
prove the accuracy without any other changes to the implementation
of the FD method. We construct an objective function of the fourth-
order FD method as

E≡
���� k̄z − kz

kz

����: (9)

The wavenumber and phase angle are linked by (Shan, 2009)
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V2ðθÞ
v2

¼ 1

2
þ ε sin2 θ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2ε sin2 θÞ2 − 2ðε − δÞsin2 2θ

q
; (11)

where θ is the phase angle away from the vertical direction, VðθÞ is
the qP-wave phase velocity in acoustic VTI media and v is the
phase velocity in the vertical direction (Tsvankin, 1996; Alkhalifah,
1998, 2000). Recalling u2 ≡ v2k2x∕ω2, we obtain

u2 ¼ v2 sin2 θ

V2ðθÞ : (12)

Therefore, we can represent the objective function (i.e., equation 9)
in terms of only phase angle θ as well as Thomsen anisotropy para-
meters ε and δ.

In this paper, we present a group of robust optimized coefficients
for all pairs of ε and δ within a wide range, so that we can handle
strong anisotropy and strong anisotropy variations. We limit the
ranges of the Thomsen anisotropy parameters as ε ∈ ½εmin; εmax�
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and δ ∈ ½δmin; δmax�; thus, we can find some group of optimized
coefficients within an angle range of θ ∈ ½0°; θmax� under a given
error threshold T (e.g., 1% or 0.5%). If this group of optimized coef-
ficients is suitable for all pairs of ε and δ on a fine grid of
ε ∈ ½εmin; εmax� and δ ∈ ½δmin; δmax�, we assume that this group of
optimized coefficients is suitable for the entire range of
ε ∈ ½εmin; εmax� and δ ∈ ½δmin; δmax�. In other words, we first set a
grid to cover a given region of Thomsen anisotropy parameters, then
we try to find a group of optimized coefficients that satisfies
Eðθ; ε; δÞ ≤ T on all grid nodes simultaneously. Next, our task is
to find such a group of optimized coefficients to maximize θmax.

The basic idea of coefficient optimization is to match the approxi-
mated dispersion relation k̄z (equation 5) with the true dispersion
relation kz (equation 2) within a wider angle range. Disregarding
the physical meaning, we can tune any constants to achieve a much
higher accurate dip angle (Zhu et al., 2008). Thus, we extend the
optimized coefficients from two to three for the second-order FD
method and from four to six for the fourth-order FD method. Be-
sides, we further relax the constant coefficient of the time-delay
term (i.e., equation 6) by adding a very small perturbation. That
is, there are four constant coefficients ready to be optimized in



coefficients for each pair of ε and δ independently; thus, the accu-
rate dip angle strongly depends on the parameters ε and δ. Theoret-
ically, each group of optimized coefficients is only valid for the pair
of ε and δ that are used to generate the optimized coefficients. Con-
sequently, we could not guarantee the validity of a group of opti-
mized coefficients for other pairs of ε and δ, especially in the
presence of strong lateral variations in anisotropy. In addition, a
large table is required to store the optimized coefficients, and a table
lookup is needed during wavefield extrapolations. For strong ani-
sotropy parameters, the number of optimized coefficients stored in
the table is even up to several million, assuming that the sampling
interval of the anisotropy parameters is of 0.001. Unfortunately, this
interval is still not small enough for local optimization schemes to
obtain an unconditionally safe table, as illustrated by Figure 1.

Figure 1 shows three groups of curves corresponding to the ana-
lytic Taylor-series expansion (i.e., equation 5), the locally optimized
FD method using the least-squares approach (i.e., equation 14) and
the globally optimized FD method using the simulated annealing
algorithm (i.e., equation 13), respectively. We examine the robust-
ness (or sensitivity) of their accuracy by introducing some small
variations in anisotropy parameters. For each method, we plot nine
curves around a typical group of anisotropy parameters with a uni-
form interval of 0.001. Figure 1a is around ε ¼ 0.4 and δ ¼ 0.2, and
Figure 1b is around ε ¼ 0.2 and δ ¼ −0.2. For simplicity, only the
fourth-order methods are discussed here. It is obvious that the FD
method using the analytic Taylor-series expansion is always accu-
rate within a 45° phase angle. Meanwhile, its accuracy is very stable
for small variations in anisotropy parameters because the nine
curves almost share the same position. In addition, the local opti-
mization scheme using the least-squares approach and the global
optimization scheme using the simulated annealing algorithm have
much higher accurate phase angles than the analytic Taylor-series
expansion.

However, the local optimization scheme based on equation 14
using a 1% error threshold (Shan, 2009) shows great diverging os-
cillation; that is, its curves exhibit significant error when they are
corresponding to the surrounding rather than the central anisotropy
parameters. Some curves even rush out of the error threshold of 1%
at a 63° phase angle, which means that the local optimization
scheme is virtually useless because it is close to the unoptimized
result. This indicates that the local optimization scheme based
on equation 14 is too sensitive to a small variation of anisotropy
parameters. Although we can further reduce the grid interval to im-
prove the reliability of this method, such as using 0.0005, the com-
putational cost of generating the table and the table lookup would
encounter great challenge because the number of the grid nodes
over a strongly anisotropic region is probably more than tens of
millions.

In contrast, the global optimization scheme based on equation 13
using a 0.5% error threshold behaves much better because all curves
assemble closely within the error threshold. This allows us to use a
much larger grid interval during the optimization, which helps to
save the computational cost of generating the optimized coeffi-
cients. The maximum accurate phase angle is slightly smaller (at
about 5°) than that of the local optimization scheme based on equa-
tion 14 using the least-squares approach. However, the former is
much better than the latter because the former’s error is within
0.5% rather than the latter’s 1%. Therefore, we see that equation 13
using the simulated annealing algorithm provides us coefficients

with much better accuracy, robustness, and a much smaller error
threshold than equation 14 using the least-squares approach does.

RELATIVE ERROR ANALYSES

We reproduce the scattering graph of ε and δ using the table in
Thomsen (1986), as shown in Figure 2. Thomsen’s table includes
virtually all published data on measured anisotropy of sedimentary
rocks, so we can use it to examine the capability of our optimized
coefficients in handling practical anisotropic migration. We
classify the anisotropy into three classes: weak anisotropy for ε ∈
½−0.03; 0.3� and δ ∈ ½−0.1; 0.2� (see the shadow zone in Figure 2),
strong anisotropy for ε ∈ ½−0.1; 0.4� and δ ∈ ½−0.3; 0.6� (see
the gray zone in Figure 2), and extreme anisotropy for
ε ∈ ½−0.4; 0.8� and δ ∈ ½−0.2; 1.22� (see the whole zone of
Figure 2). Obviously, the weak anisotropy covers the densest area
of anisotropy distributions, thus it would be the lowest level for a
migration method to handle. The strong anisotropy covers almost
the whole area of anisotropy distributions except one abrupt point of
δ and four ultra points of ε, thus it would be the most practical level
for a migration method to handle. The extreme anisotropy covers all
anisotropy distributions and even beyond them to some extent, thus
it would be the most severe case for a migration method to handle.
We would seldom encounter the extreme anisotropy, but as a means
of examination we still include it in our error analyses. A fine grid is
set up over ε ∈ ½εmin; εmax� and δ ∈ ½δmin; δmax� with a uniform in-
terval of 0.02. We also test on much denser grid to check on the
reliability of relative error analyses, but we do not find sampling
affect and gain the same conclusion. We plot all error curves on
each grid nodes together to analyze the overall accuracy improve-
ment due to the optimized coefficients.

Figures 3, 4, and 5 show the relative error versus phase angle for
the weak, strong, and extreme anisotropy, respectively. We see
that the error curves of the Taylor-series expanded and globally

Figure 2. Scattering graph of Thomsen parameters of measured an-
isotropy in sedimentary rocks. This figure is produced according to
the Table 1 of Thomsen (1986).
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optimized FD methods are bundled, respectively. The error curves
of the Taylor-series expanded FD method grow rapidly at a rela-
tively low angle; in contrast, the error curves of the globally opti-
mized FD method vibrate several times within the error threshold
and finally rush out at a high angle. This means the globally opti-
mized coefficients are effective in achieving a much higher accurate
angle, given a tolerable threshold, no matter whether for weak,
strong, or even extreme anisotropy.

The accurate phase angle decreases when the anisotropy becomes
stronger. However, the improvement due to using the global opti-
mization scheme is stable and always about 18°–22° for the second-
order FD method and about 22°–27° for the fourth-order FD meth-
od. The improvements of the accurate angle due to using our global
optimization scheme are shown in Figure 6 for various cases shown
in Figures 3, 4, and 5. For the weak anisotropy (see Figure 3), the

accurate angle of the globally optimized second-order FD method is
up to 60° from the original 41°, and that of the globally optimized



IMPULSE RESPONSES

In this section, we illustrate the relative error analyses by impulse
responses. A 2D homogeneous medium is defined on a grid of
2000 × 600 with a grid spacing of 5 m. The vertical velocity of
the qP-wave is v ¼ 4500 m∕s. A single input trace is located at
the center of the upper surface. The traveltime is 600 ms with
2 ms sampling. The dominant frequency of a Ricker wavelet
is 30 Hz.

Figure 7a and 7b shows vertical slices of the second-order and the
fourth-order FD methods, respectively. This figure is generated
using ε ¼ 0.4 and δ ¼ 0.6 (i.e., S4 in Figure 8), which are at
one of the outer corners of strong anisotropy region. Each subfigure
contains two parts: the left and right parts are the Taylor-series
expanded and globally optimized ones, respectively. Obviously,
the globally optimized FD methods show much wider ranges of ac-
curate phase angle compared with the Taylor-series expanded ones.
Figure 7 indicates that the improvement after using our global

optimization scheme is significant either for the second-order or
for the fourth-order FD method.

Figure 8 shows some typical groups of anisotropy parameters.
These groups are mainly on the outer corners of weak, strong
and extreme anisotropy areas defined in Figure 2. Figures 9, 10,
and 11 show the impulse responses of the globally optimized
fourth-order FD method for weak, strong and extreme cases, respec-
tively. We can see that all images show great agreements to the

Figure 5. Relative error versus phase angle for extreme anisotropy:
(a) the second-order FD method, (b) the fourth-order FD method.
See Figure 3 for a detailed description.

Figure 6. The improvement of accurate phase angle due to using
our global optimization scheme for various cases shown in Fig-
ures 3, 4, and 5. The left and right part is about the second-order
and fourth-order method, respectively. The gray bars denote the
Taylor-series expanded FD method, and the dark bars denote the
globally optimized FD method.

Figure 7. Impulse responses before and after using the global op-
timization scheme. This figure is generated by ε ¼ 0.4 and δ ¼ 0.6.
(a) The second-order FD method. (b) The fourth-order FD method.
Each subfigure contains two parts: the left and right parts are
Taylor-series expanded and globally optimized FD methods,
respectively.
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theoretical positions (indicated by dashed curves), except for the
high phase angles in the case of extreme anisotropy. This means
our globally optimized FD method is able to image steep dips
for most of the practical VTI media.

TEST ON STRONGLY VTI MODEL

To verify the capabilities of our globally optimized FD method,
we test on a magnified Hess model, as shown in Figure 12. The
Thomsen anisotropy parameters ε and δ are twice and four
times as big as the original values, respectively. The grid is
2048 × 750 with a uniform spatial interval of 40 ft. A

Figure 8. Some typical groups of anisotropy parameters used in
Figures 9, 10, and 11. These groups are at the corners of weak,
strong and extreme anisotropy areas defined in Figure 2, respec-
tively. Four rectangles indicated by W denote weak anisotropy, four
pentagrams indicated by S denote strong anisotropy, and four cir-
cles indicated by A denote extreme anisotropy.

Figure 9. Impulse responses of the globally optimized fourth-order
FD method for weak anisotropy. Each subfigure contains two parts,
and each part is generated by different anisotropy parameters (i.e.,
W1–W4 shown in Figure 8). The dashed semicircle indicates the
theoretical positions.

Figure 10. Impulse responses of the globally optimized fourth-or-
der FD method for strong anisotropy. Each subfigure contains two
parts, and each part is generated by different anisotropy parameters
(i.e., S1–S4 shown in Figure 8). The dashed semicircle indicates the
theoretical positions.

Figure 11. Impulse responses of the globally optimized fourth-or-
der FD method for extreme anisotropy. Each subfigure contains two
parts, and each part is generated by different anisotropy parameters
(i.e., A1–A4 shown in Figure 8). The dashed semicircle indicates
the theoretical positions.
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two-way method (Alkhalifah, 2000; Zhang et al., 2005a) is used to
generate 500 shot gathers. The dominant frequency of the Ricker
wavelet is 15 Hz.

Figures 13 and 14 show the prestack depth migration results of
the second-order and the fourth-order FD methods, respectively. We
see that the accuracy is almost the same for each method at gentle
structures. The difference is mainly at the dipping structures indi-
cated by white arrows and an ellipse. The second-order FD method
using the Taylor-series expansion has the lowest accuracy. After
using our globally optimized coefficients, the second-order FD
method is much more accurate, and the resulting accuracy is close
to that of the fourth-order FD method using the Taylor-series ex-
pansion (compare Figures 13b and 14a). The globally optimized
fourth-order FD method has the highest accuracy because it can
perfectly image almost all structures, including low-velocity thin
sediment targets under the salt body and salt flanks with steep dips.
This indicates that our globally optimized FD methods are much
better than the original ones based on the Taylor-series expansion.
Therefore, we should use the globally optimized second-order
method if the computational cost is serious and the wide-angle ac-
curacy is not so important; beside, we should always use the glob-
ally optimized fourth-order FD method.

DISCUSSION

The Fourier FD method (Ristow and Rühl, 1994) is very popular
in imaging complex isotropic media. However its extension to the
VTI media is much harder than that of the implicit FD method be-
cause it is difficult to select proper references of anisotropy para-
meters (Hua et al., 2006; Shan, 2009). If we select the reference
anisotropy parameters as the minimum of each layer, we will en-
counter a huge table because we have to list each possible case
and optimize the coefficients independently. If we set the reference
anisotropy parameters to be zero for each layer, we will get a sim-
plified table (Shan, 2009); but will also lose too much accuracy be-
cause the reference is too far away from the real value. This problem
will be very serious especially when the anisotropy is strong, or
when the variation of the anisotropy is strong. Therefore, we only
perform optimization on the implicit FD method in the text. The
global optimization scheme for the Fourier FD is still open.

Using the global optimization scheme over the low-accuracy sub-
regions sounds helpful for improving the maximum phase angle.
Thus, we try our global optimization scheme separately on each
block of a 5 × 5 massive partition of anisotropy parameters. How-
ever, only a slight improvement at about 3° is obtained for big δ
regions and almost no improvement is obtained for the other

Figure 12. Strong anisotropy Hess model: (a) vertical velocity of
the qP-wave, (b) anisotropy parameter ε ¼∈ ½0; 0.57�, (c) anisotropy
parameter δ ∈ ½0; 0.63�. This model is modified from the Hess mod-
el: the anisotropy parameters ε and δ are twice and four times as big
as the original values, respectively.

Figure 13. Comparison between migration results obtained by the
second-order implicit FD method: (a) using the analytic Taylor-ser-
ies expansion, (b) using the global optimization scheme.
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regions. Maybe a much smaller massive partition is feasible at the
cost of a much larger table.

The dispersion relation for acoustic VTI media is obtained by
setting the qS-wave velocity to be zero, which is valid only when
the anisotropy is not so strong. However, the critical condition of
this approximation has not been clear until now. Consequently, we
suggest using our globally optimized coefficients only when the an-
isotropy is not so strong. Our globally optimized coefficients can be
used for 3D cases and the compensations of two-way splitting error
(e.g., Li, 1991; Wang, 2001; Fei and Etgen, 2002; Bakker, 2009;
Zhang, 2009; Zhang and Yao, 2011).

CONCLUSIONS

We present an implicit FD method using the analytic Taylor-ser-
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