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Short Note

Two kinds of separable approximations for the one-way wave operator

Jing-Bo Chen1 and Hong Liu1

INTRODUCTION

Le Rousseau and de Hoop (2001) developed a general-
ized screen method that generalizes the phase-screen and
the split-step Fourier methods to increase their accuracies
with large and rapid lateral variations. Using two Taylor ap-
proximations and a perturbation hypothesis, this approach
approximates the one-way wave operator by products of func-
tions in space variables and functions in wavenumber vari-
ables. This approximation enables the inverse Fourier trans-
form with respect to wavenumbers to be independent of the
space variables, thus resulting in significant improvement of
the computational efficiency. In spite of its great success, this
method has low convergence, and it suffers from the presence
of branch points resulting from the choice of the background
medium.
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Using equation 1 to compute the propagator requires a 2D
inverse FFT (fast Fourier transform) for each space point in
each depth interval because the FFT depends on the space
variables. If we use equation 4, then the FFT no longer de-
pends on the space variables and leads to a significant sim-
plification of computational effort. The computational com-
plexity of equation 4 for each depth interval is proportional
to (s + 1)NxNylog2(NxNy), where s refers to s inverse FFTs,
1 means one forward FFT, and Nx and Ny are the number of
samples in x- and y-directions, respectively. The good perfor-
mance of the separable approximation has been demonstrated
on migration examples in le Rousseau and de Hoop (2001).
The construction of the separable approximation (3) can be
performed in two frameworks; one is local, the other global.

Local framework for constructing
separable approximations

The local framework for constructing separable approxi-
mations consists of using the local Taylor expansion of the
one-way operator (2) and assuming a reference velocity as a
background velocity. Some methods impose no restrictions on
the reference velocity, such as the split-step Fourier method
(Stoffa et al., 1990) and the phase-screen method (le Rousseau
and de Hoop, 2001). Some methods however, (e.g., the gener-
alized screen method) (le Rousseau and de Hoop, 2001) im-
pose conditions on the reference velocity, such as requiring
that the reference velocity be smaller than the minimum ve-
locity to avoid the branch points.

Let c0(z̄) denote the reference velocity in the depth interval
under consideration. The perturbation �c(x, y, z̄) is given by

�c(x, y, z̄) = 1
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− 1
c2

0(z̄)
.

In the following, the corresponding s, fi , and gi are shown
in equation 3 for the above-mentioned separable approxima-
tions. The notation z̄ is omitted for simplicity. The split-step
Fourier method is:
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The phase-screen method is:
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The generalized-screen method (nth order) is:
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where j = 1, 2, . . . , n and

a1 = 1
2
, aj = (−1)j+1 1 · 3 · · · (2j − 3)

j ! 2j
, j ≥ 2.

In the local framework, separable approximations based on
the Chebyshev expansions are worthy of investigation (Halpern
and Trefethen, 1988).

Global framework for constructing
separable approximations

The global framework for constructing separable approxi-
mations consists of approximating the one-way operator (2)
in a global interval by means of optimization, and it was de-
veloped by Chen and Liu (2004). We give a brief introduction
to this method below.

We introduce variables u = ω/c(x, y, z̄) and k = √
k2

x + k2
y ,

and with these variables, the one-way operator (2) becomes

A(u, k) = exp
(
i
√

u2 − k2�z
)

. (5)

The optimal separable approximation for equation 5 is to find
functions φ(u), ψ(k), and a complex number λ such that

‖A(u, k) − λφ(u)ψ(k)∗‖L2 = min
φ̃,ψ̃,λ̃

‖A(u, k)

− λ̃φ̃(u)ψ̃(k)∗‖L2 , (6)

where ∗ denotes the complex conjugate, λ̃ ∈ C, and

φ̃ ∈ {
φ̃(u) : φ̃(u) ∈ L2[a, b], ‖φ̃(u)‖L2 = 1

}
,

ψ̃ ∈ {
ψ̃(k) : ψ̃(k) ∈ L2[c, d], ‖ψ̃(k)‖L2 = 1

}
.

Here, L2
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integral equation system:∫ d

c

A(u, k)ψ(k)dk = λφ(u),
(7)∫ b

a

A(u, k)∗φ(u)du = λ∗ψ(k).

In general, the analytical solution of system (7) is not avail-
able and can be solved only numerically. Consider partitions
of intervals [a, b] and [c, d] with nodes:

ui = a + (i − 1)�u, i = 1, 2, . . . , m + 1; �u = b − a

m
,

kj = c + (j − 1)�k, j = 1, 2, . . . , n+ 1; �k = d − c

n
.

Set φ = (φ1, φ2, . . . , φm)T and ψ = (ψ1, ψ2, . . . , ψn)T , where
φs = φ(us), s = 1, 2, . . . , m and ψq = ψ(kq), q = 1, 2, . . . , n.

Let A = (ai,j ) be a matrix with entries:

ai,j = A(ui, kj ), i = 1, 2, . . . , m; j = 1, 2, . . . , n.

By solving the system (7) numerically, we can conclude that φ

and ψ are the left and right singular vectors of A correspond-
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