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Abstract: The complex frequency shifted perfectly matched layer
(CFS-PML) can improve the absorbing performance of PML for nearly
grazing incident waves. However, traditional PML and CFS-PML are
based on first-order wave equations; thus, they are not suitable for
second-order wave equation. In this paper, an implementation of CFS-
PML for second-order wave equation is presented using auxiliary differ-
ential equations. This method is free of both convolution calculations
and third-order temporal derivatives. As an unsplit CFS-PML, it can
reduce the nearly grazing incidence. Numerical experiments show that it
has better absorption than typical PML implementations based on
second-order wave equation.
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1. Introduction

Numerical simulation is essential for understanding wave phenomena and for estimat-
ing the physical parameters of the materials. Due to the restrictions on both memory
demand and computational cost, we have to introduce artificial boundaries to concen-
trate on the interested area of the model; however, unwanted reflections from these
artificial boundaries would contaminate the wavefields and an artificial boundary con-
dition is needed. Many methods have been proposed for this purpose as reviewed by
Gao et al. (2016), and the perfectly matched layer (PML) (B�erenger, 1994) breaks a
new way by introducing physical attenuations to the wave equation. However,
traditional PML would produce apparent artificial reflections for nearly grazing inci-
dent waves, low-frequency waves, and evanescent waves (Festa and Vilotte, 2005;
Komatitsch and Martin, 2007; Drossaert and Giannopoulos, 2007a). The complex fre-
quency shifted perfectly matched layer (CFS-PML) (Kuzuoglu and Mittram, 1996) has
a better absorbing performance in these cases (Festa and Vilotte, 2005; Drossaert and
Giannopoulos, 2007b). In addition, traditional PML adopts a nonphysical splitting of
wave equations, which have been proven to be weakly well-posed. Convolutional PML
(Roden and Gedney, 2000) and auxiliary differential equation perfectly matched layer
(ADE-PML) (Ramadan, 2003; Zhang and Shen, 2010) are proposed to solve this
problem.

Generally, the traditional PML, CFS-PML, convolution PML, and ADE-
PML are derived based on the first-order equations; thus, they cannot be directly used
for the second-order wave equation. This means that the second-order wave equation
must be transformed into the first-order form in order to adopt PML. In fact, the
second-order wave equation is more simple and compact in form than the first-order
one; thus, it is widely used for acoustics (e.g., Liu and Tao, 1997; Qi and Geers, 1998;
Bonomo et al., 2015) and seismic explorations. It is worthwhile to directly develop the
PML for the second order wave equation.

Komatitsch and Tromp (2003) construct the PML for the second-order dis-
placement elastic wave equation by splitting the wavefield into four terms. Third-order
temporal partial derivatives arise and an auxiliary variable should be introduced to
deal with this problem. Liu et al. (2012) implement this method in a much easier way.
However, this method cannot be used in the implementation of CFS-PML for the
second-order wave equation, since the coordinate stretched operator of CFS-PML is
more complicated than that of the PML. Li and Matar (2010) propose an implementa-
tion of CFS-PML for the second-order elastic wave equations; whereas, the temporal
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partial derivative is in the second order but the spatial partial derivatives are still in
the first order. It is difficult to extend this method to the second-order wave equation.
Recently, Ping et al. (2014) presented a split PML for the second-order elastic wave
equation.

Pasalic and McGarry (2010) propose an implementation of unsplit CFS-PML
for the second-order wave equation using a convolutional algorithm (Roden and
Gedney, 2000). However, this method introduces additional convolution and thus
would be too complicated in implementation. Ma et al. (2013, 2014) propose a new
kind of ADE-PML for the second-order wave equation, which involves neither convo-
lution nor third-order temporal derivatives; thus, it is pretty direct in implementation.
As a result, the storage requirement and computational cost are apparently lower than
that of split PML (e.g., Komatitsch and Tromp, 2003; Ping et al., 2014). In this paper,
we extend the ADE-PML proposed by Ma et al. (2013, 2014) to the unsplit CFS-PML
for the second-order wave equation. Compared with the ADE-PML proposed by Ma
et al. (2013, 2014), our method can greatly reduce the nearly grazing incidence reflec-
tions due to using CFS.

2. CFS-PML for the second-order wave equation

The second-order wave equation in the frequency domain is

@2U
@x2 þ

@2U
@z2 ¼

jxð Þ2

v2 U ; (1)

where U � Uðx; z; xÞ is the Fourier transform of the pressure u � uðx; z; tÞ, j ¼
ffiffiffiffiffiffiffi
�1
p

; x
is the circular frequency, and v is the velocity (or wave speed). For simplicity, we only
consider the x-direction. The wave equation can be extended to complex coordinates as
follows:

s xð Þ ¼ v xð Þ þ d xð Þ
a xð Þ þ jx

; (2)

thus, we have

@

@x
! @

@~x
¼ 1
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@

@x
; (3)

where sðxÞ is the complex stretching function and dðxÞ is the attenuation coefficient.
Parameters dðxÞ, aðxÞ, and vðxÞ are expressed as follows:

d xð Þ ¼ d0
x
d

� �pd

; (4)

v ¼ 1þ vmax � 1ð Þ x
d

� �pv

; (5)

a ¼ amax 1� x
d

� �pa
" #

; (6)

where amax ¼ pf0, f0 is the dominant frequency of the source time function, d is the
width of the PML, and x is the distance to the innermost layer of the PML. The pa-
rameters pd , pv, and pa typically range from 1 to 4 and 2 is commonly used (Roden
and Gedney, 2000; Zhang and Shen, 2010). We use pd ¼ 2, pv ¼ 2, and pa ¼ 1 as sug-
gested by Zhang and Shen (2010) and d0 ¼ ½ðpd þ 1Þvmaxlnð1=RÞ�=ð2dÞ by Collino and
Tsogka (2001), where vmax is the maximum velocity and R is the theoretical reflection
coefficient. For a PML width of N number of cells, R can be expressed as log10ðRÞ ¼
½�ð log10ðNÞ � 1Þ= log10ð2Þ� � 3: Generally vx ¼ 1 is good enough for most applications
(Komatitsch and Martin, 2007); thus, Eq. (2) becomes s ¼ 1þ d=ðaþ jxÞ. With the
stretched complex coordinates, Eq. (1) can be expressed as

�x2

�2 U ¼ @
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@�x2 þ
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@z2 ¼

1
s
@

@x
1
s
@U
@x

� �
þ @

2U
@z2 : (7)

Equation (7) is the CFS-PML in the x-direction. We can obtain a similar equation in
the z-direction by exchanging the variables x and z for all related terms.
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3. CFS-PML using ADE

We apply the ADE proposed by Ma et al. (2013, 2014) to reduce the artificial reflec-
tions associated with nearly grazing incidence when solving the second-order wave
equation with the CFS-PML. The stretched term along the x-direction in Eq. (7) can
be expressed as

1
s
@

@x
1
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@U
@x

� �
¼ 1
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@U
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þ 1
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@x
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where a primed variable denotes its partial derivative with respect to x. Introducing a
variable p � aþ jxþ d and substituting it into Eq. (8), we can obtain
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where
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Introducing an auxiliary
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Eq. (7) becomes

�x2
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@z2 �U1: (11)

Multiplying both sides of Eq. (10) by p, we obtain
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where U2 is defined as
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p
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aþ jxþ dð ÞU3 ¼ d2 d 0 þ a0ð Þ @U
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;
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Transforming the above equations back to the time domain, we have
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@2u
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Since u3 depends only on u, it should be updated first; then u2 is updated,
which depends on u and u3; next u1 is updated, which depends on u and u2; finally, u
is updated. The similar expansion can be done in the z-direction.

Compared with the original split PML (Komatitsch and Tromp, 2003; Xing,
2010), which needs to solve three second-order and one first-order auxiliary equations,
our method contains only three first-order auxiliary equations, which facilitates the
implementation and can greatly reduce memory demand and computational cost
simultaneously. Compared with the convolutional CFS-PML for the second-order
wave equation proposed by Pasalic and McGarry (2010), our ADE-CFS-PML is free
of convolution.

4. Numerical experiments

We performed several numerical experiments on a homogeneous square model. The
wave velocity was 3000 m/s. The spatial grid interval was 10 m, and the grid number
was 301� 301. The source was a Ricker wavelet with a dominant frequency of 15 Hz.
Four kinds of PML implementations were compared in order to verify the perform-
ance of the proposed method: PML for the first-order wave equations (Liu and Tao,
1997; Qi and Geers, 1998) (first-order PML for short), ADE-PML for the second-

Fig. 1. Snapshots of wavefield using different boundary conditions. (a) At 750 ms and (b) at 1100 ms. (a1) First-
order PML; (a2) ADE-PML; (a3) second-order PML; (a4) ADE-CFS-PML. (b1) First-order PML; (b2) ADE-
PML; (b3) second-order PML; (b4) ADE-CFS-PML.
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order wave equation proposed by Ma et al. (2014), PML for the second-order wave
equation proposed by Komatitsch and Tromp (2003) (second-order PML for short);
and ADE-CFS-PML for the second-order equation presented here. The total number
of absorbing layers was 30 for each method.

Figure 1 shows the snapshots obtained by different methods. Among the four
methods listed, the absorption performance of the first-order PML was the best since it
can take advantage of the staggered grid. In addition, the absorption performance of
ADE-CFS-PML was better than that of either ADE-PML or second-order PML. This
indicates that ADE-CFS-PML was the best absorbing boundary for the second-order
wave equation. We can draw the same conclusions from the profiles recorded at the
surface, as shown in Fig. 2.

In practical applications, the model was sometimes very large in scale, which
would lead to nearly grazing incidence when the wavefields were propagating far away
from the source. We further examined ADE-PML and ADE-CFS-PML using a long
model. The grid number was 601� 81. The spatial grid interval was 10 m, and the source
was a Ricker wavelet with a dominant frequency of 7 Hz. The seismic source was located
at 0 m along the x-direction and 100 m in depth. The wave velocity was 3000 m/s.

We used a much larger model to generate an ideal wavefield that has no
boundary reflection, which can be regarded as a theoretical reference to check the per-
formance of both ADE-PML and ADE-CFS-PML. Figure 3 shows the profiles
recorded at the surface of the model. Obviously, both for the non-grazing incident
waves or nearly grazing incident waves, the absorption performance of ADE-CFS-
PML is better than that of ADE-PML. These numerical experiments show that both
the ADE and CFS work well for the PML after we extend the ADE-PML proposed
by Ma et al. (2013, 2014) to the CSF-PML.

For the convenience of comparing the absorption performances of different
boundary conditions, we calculate the numerical reflection coefficient by

Rp ¼
����max urefð Þ �max umodð Þ

max urefð Þ

����; (19)

Fig. 2. Shot profiles of a point source with different absorbing boundaries. (a) First-order PML; (b) ADE-PML;
(c) second-order PML; (d) ADE-CFS-PML.

Fig. 3. Shot profiles of a point source on the surface of the long model. (a) Theoretical record; (b) ADE-PML;
(c) ADE-CFS-PML.
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where uref is the theoretical wavefield without artificial reflections, and umod is the
wavefield with different artificial boundary conditions. Figure 4(a) shows the numerical
reflection coefficient for different boundary conditions at different incident angles, and
Fig. 4(b) shows the decibel (dB) values of numerical reflection coefficient calculated by
dBðRpÞ ¼ 20 log10Rp. Obviously, the ADE-CFS-PML has a better absorbing perform-
ance compared with ADE-PML for almost all incident angles, and the reflection coeffi-
cient of the ADE-CFS-PML for nearly grazing incident wave is smaller than that of
ADE-PML.

5. Conclusions

We present an efficient implementation of unsplit CFS-PML using ADE for the
second-order wave equation. This method does not need to split the wavefield, which
eliminates solving convolution and the third-order temporal derivatives. Our method is
easier to understand in form and is fairly simple in implementation. Numerical experi-
ments show our method has better accuracy compared with typical existing PML
implementations for the second-order wave equation.
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