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SUMMARY

Due to the influence of variations in landform, geophysical data acquisition is usually sub-

sampled. Reconstruction of the seismic wavefield from sub-sampled data is an ill-posed inverse

problem. Compressive sensing can be used to recover the original geophysical data from the

sub-sampled data. In this paper, we consider the wavefield reconstruction problem as a com-

pressive sensing and propose a piecewise random sub-sampling scheme based on the wavelet

transform. The proposed sampling scheme overcomes the disadvantages of uncontrolled ran-

dom sampling. In computation, an l1-norm constrained trust region method is developed to

solve the compressive sensing problem. Numerical results demonstrate that the proposed sam-

pling technique and the trust region approach are robust in solving the ill-posed compressive

sensing problem and can greatly improve the quality of wavefield recovery.
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1 INTRODUCTION

In seismology, due to limitations of the observations, the observed data is incomplete, e.g., some traces are lost. In that situation, a key obstacle

is how to invert the model using only incomplete, sub-sampled data (Herrmann & Hennenfent, 2008). Restoration of the original wavefield

from incomplete observed data is an ill-posed problem in general. Recently, the recovery of seismic wavefield based on compressive sensing

was developed (Herrmann & Hennenfent, 2008). Meanwhile, two main problems are how to establish a proper mathematical compressive

sensing model and how to solve the minimization model.

For solving a compressive sensing problem, there are many methods available such as the (orthogonal) matching pursuit method (Chen et

al., 1998; Tropp & Gilbert, 2007), interior point solution method (Wang et al., 2010), operator splitting method (Wang, 2011), preconditioning

conjugate gradient method (Kim et al., 2007) and the gradient projection method (Figueiredo et al., 2007; Ewout & Michael, 2008). The

gradient descent methods usually yield a local solution (Yuan, 1993). In geophysics, we are required to find a global optimization solution

of the minimization model. Therefore proper globally convergent optimized algorithms are urgently needed. To obtain a global minimizer,

we develop an l1 constrained trust region method in this paper. The trust region method was proved to be a regularization method for

ill-posed inverse problems (Wang & Yuan, 2005), and hence can be employed to solve ill-posed wavefield restoration problems based on

compressive sensing. To solve for a Lagrangian parameter of the trust region subproblem, we propose a Newton’s method which possesses

quadratic convergence rate. Numerical experiments on signal processing and seismic wavefield restoration problem indicate the robustness

and applicability of our algorithms.

2 COMPRESSIVE SENSING THEORY

Signal acquisition systems based on the Nyquist-Shannon sampling theorem require that the sampling rate needed to recover a signal without

error is twice the bandwidth. This sampling theorem is hard to satisfy in practice. As an alternative, compressive sensing (CS) has recently

received a lot of attention in the signal and image processing community. Instead of relying on the bandwidth of the signal, the CS uses

the basic assumption: sparsity. The sparsity can lead to efficient estimations and compression of the signal via a linear transform, e.g., sine,

cosine, wavelet and curvelet transforms (Herrmann et al., 2008). The method involves taking a relatively small number of non-traditional

samples in the form of projections of the signal onto random basis elements or random vectors (Donoho, 2006; Candes et al., 2006; Candes

& Wakin, 2008). Therefore, if the signal has a sparse representation on some basis, it is possible to reconstruct the signal using few linear

measurements.
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2.1 Sparse transform

For a signal x in N -dimensional space, we have M observation data di = Aix, i = 1, 2, · · · , M , where Ai for each i is a row vector,

which represents the impulse response of the i-th sensor. The product of Ai with x yields the i-th component of data d. Denote A =

[A1, A2, · · · , AM ]T , the observation data can be reformulated as d = Ax. The aim of the compressive sensing is to use limited observations

di (i = 1, 2, · · · , M ) with M ¿ N to restore the input signal x.

Suppose x is the original wavefield which can be spanned by a series of orthogonal bases “i(t). These bases for all i constitute an

orthogonal transform matrix “ such that

x(t) = (“m)(t) =
∑

i

mi“i(t), (1)

where mi = (x, “i). Using operator expression, m = “∗x. The vector m is thought of as the sparse or compressive expression of the signal

x. Letting L = A“, the reconstruction problem of the sparse signal m reduces to solving a simple problem d = Lm. Note that if mi is the

weight or coefficient of linear combinations for the signal x, the reconstruction of the signal x in turn becomes to find the coefficient vector

m.

There are many ways to choose an orthogonal transform matrix based on some orthogonal bases, e.g., sine curve, wavelet, curvelet and

framelet, and so forth (Herrmann et al., 2008). As we are mainly concerned with new methods to solve the linear system d = Lm in this

paper, we choose a simple wavelet orthogonal bases to form the transform matrix “.

2.2 Relations with Tikhonov regularization

The compressive sensing is closely related with Tikhonov’s regularization for solving ill-posed problems (Wang, 2007). Let us begin with a

compact problem

Lm = d, (2)

where L is a compact operator (e.g., a finite rank measurement matrix) maps m from parameter space into observation space. One may

readily see that the problem (2) can be regarded as a forward model to generate seismic data: m(t) represents the model or reflectivity and L

the scattering matrix that generates the data d. Problem (2) is usually ill-posed due to the fact that existence, uniqueness and stability of the

solution may be violated. Conventional methods for solving such an ill-posed problem are Tikhonov’s regularization (Tikhonov & Arsenin,

1977)

min Jα
Tikh[m] =

1

2
‖Lm− d‖2L2 + α›[m], (3)

where α > 0 is the regularization parameter and ›[m] is the stabilizer which provides some a priori constraints on the solution. Tikhonov’s

regularization method is usually used for solving non-sparse problems, and has also been used in solving sparse problems with proper choice

of ›[m].
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2.3 Minimization in l0 space

A natural model to satisfy the sparse solutions of the linear system Lm = d is the equality constrained minimization model with l0 norm:

‖m‖l0 −→ min, subject to Lm = d, (4)

where ‖ · ‖l0 is defined as: ‖x‖l0 = {num(x 6= 0), for all x ∈ RN}, where num(x 6= 0) denotes the cardinality of nonzero components

of the vector x. Minimization of ‖x‖l0 means the number of nonzero components of x to be minimal. It is well known that the minimization

of ‖x‖l0 is an NP -Hard problem, i.e., optimization algorithms solving the l0 minimization problem cannot be finished in polynomial times.

This indicates that this model is doomed to be infeasible in practice.

2.4 Minimization in l1 space

Because of the numerical infeasibility of the l0 minimization problem, we relax it to solve the approximation model based on l1 norm:

‖m‖l1 −→ min, subject to Lm = d. (5)

The presence of the l1 term encourages small components of m to become exactly zero, thus promoting sparse solutions. Introducing the

Lagrangian multiplier λ, equation (5) is equivalent to the following unconstrained problem

‖Lm− d‖2l2 + λ‖m‖l1 −→ min . (6)

The minimization model based on l1 norm approximates the minimization model based on l0 norm quite well, while the sparsity is retained

(Cao et al., 2011; Figueiredo et al., 2007; Ewout & Michael, 2008).

2.5 Minimization in lp-lq space

In (Wang et al., 2009), the authors proposed a general lp-lq model for solving multi-channel ill-posed image restoration problem,

Jα[m] :=
1

2
‖Lm− d‖p

lp
+

α

2
‖m‖q

lq
−→ min, for p, q ≥ 0, (7)

which includes most of the regularization models thus far. Straightforward calculation yields the gradient and Hessian (the matrix of the

second-order partial derivatives) of Jα[m] as

gradJα [m] = 1
2
pLT




|r1|p−1sign(r1)

|r2|p−1sign(r2)

...

|rm|p−1sign(rm)




+ 1
2
αqLT




|m1|q−1sign(m1)

|m2|q−1sign(m2)

...

|mn|q−1sign(mn)




(8)

and

HessJα [m] = 1
2
p(p− 1)LT diag(|r1|p−2, |r2|p−2, · · · |rm|p−2)L

+ 1
2
αq(q − 1)diag(|m1|q−2, |m2|q−2, · · · , |mn|q−2),

(9)
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respectively, where r = (r1, r2, · · · , rM )T = Lm − d is the residual, sign(·) denotes a function which returns −1, 0, or +1 when the

numeric expression value is negative, zero, or positive respectively, diag(v) is the diagonal matrix whose i-th diagonal entry is the same as

the i-th component of the vector v. Evidently
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where J(x) is the objective function about the variable x in its domain of definition X . Refer to our problem, the objective function is Jα[m].

At each iteration a trial step is calculated by solving the subproblem

min
ξ∈X

ψk(ξ) := (gradk(J), ξ) +
1

2
(Hessk(J)ξ, ξ), (11)

subject to ‖ξ‖ ≤ ¢k, (12)

where gradk(J) is the gradient of J at the k-th iterative point xk,

grad(J)(x) =
d

dx
J(x) = ∇J(x), (13)

Hessk(J) is the Hessian of J at the k-th iterative point xk,

Hess(J)(x) = ∇2J(x), (14)

and ¢k is the trust region radius. The trust region subproblem (11)-(12) is an approximation to the original optimization problem (10) with

a trust region constraint which prevents the trial step being too large.

One may readily see that the minimal problem (10) can be solved by the Gauss-Newton method, i.e., solving the following problem at

the k-th iteration

Hessk(J)ξ = −grad(J)k,

xk+1 = xk + ξ.

However the method is unstable for ill-posed problems and converges locally (Wang, 2007).

At each iteration, a trust region algorithm generates a new point in the trust region, and has the procedure to determine the acceptance

and rejection of the new point. At each iteration, the trial step ξk is normally calculated by solving the trust region subproblem (11)-(12).

Generally, a trust region algorithm uses

rk =
Aredk

Predk
(15)

to decide whether the trial step ξk is acceptable and how the next trust region radius is chosen, where

Predk = ψk(0)− ψk(ξk) (16)

is the predicted reduction in the approximate model, and

Aredk = J(xk)− J(xk + ξk) (17)

is the actual reduction in the objective functional.

Now we recall the trust region algorithm for solving nonlinear ill-posed problems.

Algorithm 3.1. (Trust region algorithm for nonlinear ill-posed problems)

STEP 1 Choose parameters 0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0 and initial values x0, ¢0 > 0; Set k := 1.
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STEP 2 If the stopping rule is satisfied then STOP; Else, solve (11)-(12) to give ξk.

STEP 3 Compute rk;

xk+1 =





xk if rk ≤ τ0,

xk + ξk otherwise.

(18)

Choose ¢k+1 that satisfies

¢k+1 ∈





[τ3‖ξk‖, τ4¢k] if rk < τ2,

[¢k, τ1¢k] otherwise.

(19)

STEP 4 Evaluate gradk(J) and Hessk(J); k := k + 1; GOTO STEP 2.

In Step 2, the stopping rule is based on the discrepancy principle, i.e., the iteration should be terminated at the first occurrence of the

index k such that the energy of the residual of the observation to model is less than the preassigned tolerance. Global convergence and

regularity properties of the trust region method for ill-posed inverse problems are discussed in (Wang & Yuan, 2005).

The constants τi (i = 0, · · · , 4) can be chosen by users. Typical values are τ0 = 0, τ1 = 2, τ2 = τ3 = 0.25, τ4 = 0.5. The parameter

τ0 is usually zero or a small positive constant. The advantage of using zero τ0 is that a trial step is accepted whenever the objective function

is reduced. When the objective function is not easy to compute, it seems that we should not throw away any “good” point that reduces the

objective function (Yuan, 1993; Wang, 2007).

3.2.2 Solving the compressive sensing model in the form of a trust region subproblem

Let us go back to the lp-lq minimization model with p = 2 and q = 1. In this case, the model reads as

f(m) = ‖Lm− d‖2l2 + α‖m‖l1 −→ min . (20)

The regularization parameter α is set a priori value. It is evident that the above function f is nondifferentiable at m = 0. To make it easy

to be calculated by computer, we approximate ‖m‖l1 by
∑l

i=1

√
(mi, mi) + ε (ε > 0) and l is the length of the vector m. For notational

simplicity, we let A = LT L, γ(mk) =

(
mk

1√
(mk

1 )T mk
1+ε

,
mk

i√
(mk

i )T mk
i +ε

, · · · ,
mk

n√
(mk

n)T mk
n+ε

)T

and

χp(mk) = diag
( ε

((mk
1)T mk

1 + ε)p/2
, · · · ,

ε

((mk
i )T mk

i + ε)p/2
, · · · ,

ε

((mk
n)T mk

n + ε)p/2

)
,

where diag(·) denotes a diagonal matrix with only nonzero components on the main diagonal line. Straightforward calculation shows the

gradient of f at mk

gk := g(mk) ≈ LT (Lmk − d) + αγ(mk)

and the Hessian of f at mk

Hk := H(mk) ≈ LT L + αχ3(mk).
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With above preparation, a new trust region subproblem for the compressing model can be formulated from (11)-(12) as

min
ξ∈X

φk(ξ) := (gk, ξ) +
1

2
(Hkξ, ξ), (21)

subject to ‖ξ‖l1 ≤ ¢k. (22)

To solve the trust region subproblem (21)-(22), we introduce the Lagrangian multiplier λ and solve an unconstrained minimization

problem

L(λ, ξ) = φk(ξ) + λ(¢k − ‖ξ‖l1) −→ min . (23)

Straightforward calculation yields that the solution satisfies

ξ = ξ(λ) = −(Hk + λε−1χ1(ξ))−1gk. (24)

From (24), we find that the trial step ξ can be obtained iteratively

ξj+1(λ) = −(Hk + λε−1χ1(ξj))−1gk. (25)

And at the k-th step, the Lagrangian parameter λ can be solved via the nonlinear equation

‖ξk(λ)‖l1 = ¢k. (26)

Denoting ¡(λ) = 1
‖ξk(λ)‖l1

− 1
∆k

, the Lagrangian parameter λ can be iteratively solved by Newton’s method

λl+1 = λl − ¡(λl)

¡′(λl)
, l = 0, 1, · · · . (27)

The derivative of ¡(λ) can be evaluated as d
dλ

(
1

ρ(λ)

)
= − ρ′(λ)

ρ2(λ)
= − ρ′(λ)

‖ξk(λ)‖2
l1

, where ρ(λ) := ‖ξk(λ)‖l1 . One may readily derive that at

the k-th step

ρ′(λ) ≈




ξk
1 (λ)√

ξk
1 (λ)T ξk

1 (λ)+ε

...

ξk
i (λ)√

ξk
i (λ)T ξk

i (λ)+ε

...

ξk
n(λ)√

ξk
n(λ)T ξk

n(λ)+ε




T

∗ d

dλ
ξk(λ) = γ(ξk)T [εHk + λχ1(ξk)]−1χ1(ξk)ξk(λ). (28)

Hence the optimal Lagrangian parameter λ∗ can be obtained from iteration formula (27). Once λ∗ is reached, the optimal step ξ∗ is obtained,

and the trust region scheme in Algorithm 3.1 can be driven to another round of iteration.

Remark. Interesting properties can be obtained for the trust region method:

(1) The Lagrangian parameters {λk} is uniformly bounded. This assertion can be obtained by noticing the fact that ¢k ≥ ω‖gk‖

(ω > 0), hence {λk} is uniformly bounded. This property indicates that the Lagrangian parameter λ also plays a role of regularization.

(2) Unlike the smooth regularization, where the ‖ξk(λ)‖l2 solved by the corresponding trust region method is monotonically decreasing
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Figure 1. Random sampling: the solid circle (yellow one) represents receivers, the hollow circle (white one) means no receivers. Large gap occurs for some

sampling points.

and ‖ξk(λ)‖l2 is a decreasing function of λ (Wang & Yuan, 2005; Wang, 2007); for the sparse regularization model, the ‖ξk(λ)‖l1 solved

by the above trust region method is not necessarily decreasing, but ‖ξk(λ)‖l1 can be bounded so long as noticing the expression (24).

(3) The trust region subproblems (21)-(22) can be also solved by some gradient-type methods. This may relax the computational cost of

factorization of matrices.

4 SAMPLING

4.1 Random sampling

Regular incomplete sampling takes a number of observations in a measurement line with equidistance. This kind of sampling may not satisfy

the Shannon/Nyquist sampling theorem. As the coherence noise in frequency-wavenumber domain occurs in this type of sampling, hence it is

not suitable for orthogonal transform-based wavefield reconstruction. Random incomplete sampling refers to taking a number of independent

observations in a measurement line with randomly allocated geophones. This sampling technique is better than the regular incomplete sam-

pling, however a large sampling interval is not suitable for wavefield reconstruction, e.g., reconstruction using short-time Fourier transform

and curvelet transform. This lack of control over the size of the gaps during random sampling may lead to an occasional failed recovery.

Figure 1 illustrates the problem of the uncontrolled random sampling. Another sampling technique is the jittered undersampling (Hennenfent

& Herrmann, 2008). The basic idea of jittered undersampling is to regularly decimate the interpolation grid and subsequently perturb the

coarse-grid sample points on the fine grid. However the jittered undersampling takes only integer partition of the complete sampling, which

may not satisfy the practical wavefield reconstruction.

4.2 A new sampling technique: piecewise random sub-sampling

Usually in field applications, because of the influence of ground geometry such as valleys and rivers, the sampling is difficult to allocate

properly. Therefore the above sampling techniques would not be able to overcome such kind of difficulties completely. Considering their

shortcomings, we propose a new sampling scheme: a piecewise random sub-sampling, see Figure 2. We first partition the measurement line

into several subintervals; then perform random sampling on each subinterval. As the number of partitions is sufficient enough, the sampling

scheme will control the size of the sampling gaps while keeping the randomicity of the sampling.
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Figure 2. Piecewise random sub-sampling: : the solid circle (yellow one) represents receivers, the hollow circle (white one) means no receivers. Large gap are

controlled for any sampling points.

5 NUMERICAL RESULTS

To verify the feasibility of our algorithm, we consider two numerical examples. We start our simulation from a simple one-dimensional sparse

signal reconstruction. Then we consider an example of reconstruction of seismic shot gathers.

5.1 Random signal reconstruction

We consider a sparse signal m ∈ RN , which is measured (sensed) by a random measuring matrix L ∈ RM×N (M < N ). Then d =

Lm ∈ RM is the measurement vector. Every row of the matrix L can be seen as a measuring operator, whose inner product with m is a

measurement. M < N means the number of measurements is smaller than the length of the signal, thus the number of measurements is

compressed. In our simulation, M is chosen as 140 and N equals 200. Our problem is to recover the original signal m from the measurement

d. This is a severely ill-posed problem. Since the measurement is random, therefore, the data is randomly recorded. To show the randomness,

we plot the measurement data in Figure 3. The original sparse signal is shown in Figure 4 with legend ”o” lines. Using our trust region

algorithm and the piecewise random sub-sampling, the restoration results (”+” lines) comparing with the original signal is shown in Figure 4.

It is evident from the comparison that our algorithm is robust in reconstruction of sparse signals. This example shows that our method works

for any random generated data (e.g., in Figure 3) using random measurement matrix. Therefore, it would be a reliable and stable method for

potential practical problems.

We have shown in Section 3.2.2 that the Lagrangian parameter λ is uniformly bounded. In fact, we noticed from numerical tests that

this parameter is also in a decreasing tendency with process of iterations, see Figure 5. Hence the Lagrangian parameter λ plays a role of

regularization.

5.2 Reconstruction of shot gathers

Now we consider a 7 layers geologic velocity model, see Figure 6. With the spatial sampling interval of 15 meters and the time sampling

interval of 0.002 second, the shot gathers are shown in Figure 7. The data with missing traces are shown in Figure 8. Using our trust region

approach and the piecewise random sub-sampling, the recovered wavefield is shown in Figure 10. It is clear from the reconstruction that

most of the details of the wavefield are preserved. To show the good performance of our method, we plot the frequency information of the

sub-sampled data the restored data in Figures 9 and 11, respectively. It is clear that the aliasing (just like noise) of the sub-sampled data
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is reduced greatly in the recovered data. The difference of the original data and the recovered data is illustrated in Figure 12. Virtually, all

the initial seismic energy is recovered with minor errors. Though there are still the artifacts such as vertical stripes, we consider it might be

caused by ill-posed nature of the inversion process and insufficient iterations. We also plot the variations of the Lagrangian parameter at each

iteration in Figure 13. Again, we find that that this parameter is in a decreasing tendency with process of iterations.

5.3 Reconstruction of inhomogeneous media

Next we consider a more complicated inhomogeneous media. The data is generated using a velocity model varying both vertically and

transversely, see Figure 14. The original data, sub-sampled data and recovered data are shown in Figures 15, 16 and 18, respectively. The

frequency information of the sub-sampled data and the recovered data are shown in Figures 17 and 19, respectively. Again, the aliasing of the

sub-sampled data is reduced greatly in the recovered data. The difference of the original data and the recovered data is illustrated in Figure
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20. It illustrates that all the initial seismic energy is recovered with minor errors. Though the reconstruction is not perfect, most of the details

of the wavefield are preserved. Decreasing tendency of the Lagrangian parameter at each iteration is shown in Figure 21.

6 CONCLUSION

In this paper, we consider using trust region methods for solving the compressive sensing problem in seismic imaging. Due to limitations of

local convergence of gradient descent methods in literature, we consider a global convergent method in this paper. Particularly, we propose

an l1 constrained trust region method for solving the compressive sensing problem. In solving the trust region subproblem, an exact solution

method with the determination of the Lagrangian parameter by Newton’s method is developed. In numerical tests, a piecewise random

sub-sampling technique for wavefield reconstruction is also developed.

We argue that the trust region subproblem can be also solved in an exact way, e.g., using gradient type of methods. This deserves further

investigation. In addition, to tackle the ill-posedness of the reconstruction problem, proper regularization is necessary, e.g., choosing a proper
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regularization parameter α. In this paper, we use the a priori approach. Clearly this kind of choice is not optimal. It is desirable to find a

better regularization parameter α by a posteriori techniques.
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