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Iterative implementation of the adaptive
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Abstract The adaptive regularization method is first proposed by Ryzhikov et al. for
the deconvolution in elimination of multiples. This method is stronger than the Tikhonov
regularization in the sense that it is adaptive, i.e. it eliminates the small eigenvalues of the
adjoint operator when it is nearly singular. We will show in this paper that the adaptive reg-
ularization can be implemented iterately. Some properties of the proposed non-stationary
iterated adaptive regularization method are analyzed. The rate of convergence for inexact
data is proved. Therefore the iterative implementation of the adaptive regularization can
yield optimality.
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1 Introduction

In this paper we investigate the approximate solution of the ill-posed operator equation

Tx = y, (1)

where T is a bounded linear operator from Hilbert space X to the Hilbert space Y . As-
sume that we are interested in the MNS-solution (minimum-norm least-squares solution)
x+ of (1). Then it is well-known that

x+ = T +y, (2)

where T + denotes the Moore-Penrose generalized inverse of T . For the nonclosed range
R(T ) of T , the MNS-solution x+ exists only for

D(T +) = R(T ) + R(T )⊥ ⊂ Y

and depends discontinuously on the right-hand side. A prototype for such an ill-posed
problem is the Fredholm integral equations of the first kind

(Tx)(t) :=

∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1],
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where k is a nondegenerate L2-kernel and X = Y = L2[0, 1] (see refs. [1—3]).

In many applications, the right-hand side y cannot be obtained exactly. In fact only a
perturbed version yδ ∈ Y is available, which satisfies

‖yδ − y‖ 6 δ, (3)

where δ is an a priori known/estimated error level. Since T + is generally unbounded,
T+yδ is not a reasonable approximation to T +y, even if it exists. Therefore, one has to
use the so-called regularization method to approximate T +y.

A well established regularization method for the solution of ill-posed inverse problems
is the Tikhonov regularization[2]. Instead of solving an MNS-solution of (1), this method
minimizes a regularized functional

Mα[x, yδ]
def
=

1

2
‖Tx − yδ‖2 +

α

2
‖Lx‖2, (4)

where α > 0 is the so-called regularization parameter, L is a scale operator. In this paper,
we choose L ≡ I (the identity). For α > 0, we denote by xα

δ the minimizer of (4). By the
first-order necessary condition, xα

δ is the unique solution of the Euler equation

(T ∗T + αI)x = T ∗yδ. (5)

For the theory of Tikhonov regularization, we refer to refs. [3, 4]. It is well-known that if
the regularization parameter α is chosen to be dependent on δ such that

lim
δ−→0

δ2

α(δ)
= 0 and lim

δ−→0
α(δ) = 0

(see ref. [2]), then limδ−→0 ‖xα(δ)
δ − T +y‖ = 0. Moreover, if the exact solution fulfills

the smoothness property
T+y ∈ R((T ∗T )ν) (6)

for some ν ∈ (0, 1], then for an a priori choice of α such that

α(δ) = cδ
2

2ν+1 , c > 0,

one obtains the convergence rate[4,5]

‖xα(δ)
δ − T +y‖ = O(δ

2ν

2ν+1 ).

Note that the solution of (5) is in a direct way. The standard Tikhonov regularization
can be implemented iteratively[6−9]. Hanke et al.[6] proposed the iteration process in a
non-stationary way. Nice properties were obtained due to such a process. Schock[10] con-
sidered the regularization with adjoint operators. Recently Ryzhikov et al.[11] and Wang et
al.[12,13] considered the adaptive regularization method (simply denoted by AR) for solv-
ing ill-posed inverse problems (1) with the adjoint operator. Ryzhikov et al. successfully
utilized this kind of methods to solve geoscience deconvolution problems in elimination
of multiples. Denoting H = T ∗T , which is an adjoint operator, Ryzhikov et al.’s adaptive
regularization is based on the minimization problem

minJα[x, yδ]
def
=

1

2
‖Tx − yδ‖2 +

α

2
‖x‖2

D, (7)
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where ‖x‖D
def
=
√

(Dx, x), D is a definite or semi-definite operator. Clearly the min-
imization of (4) is equivalent to (7) if L = D

1
2 and D is symmetric. Now choosing

D = H−1 and denoting by xα
δ the minimizer of (7), for α > 0, Ryzhikov et al. obtained

(H2 + αI)xα
δ = Hzδ, (8)

where zδ = T ∗yδ. The filtering function of the AR is defined by RAR(λ) = λ(λ2 +

α)−1. The remarkable difference between the adaptive regularization and the Tikhonov
regularization is that the former can simultaneously eliminate the null space elements
of the operator when it approaches singularity while the latter needs the regularization
parameter to suppress the singularity[11,12].

We observe that the adaptive regularization can be implemented iteratively. By noting
that the regularization parameter α should be variational in each iteration to make a trade-
off of the ill-posedness of the problem, we prefer to choose the parameter in a geometric
way[2,6]. Thus the iteration process can be generated as follows:

(H2 + αnI)xδ
n = αnxδ

n−1 + Hzδ. (9)

The geometric choice of regularization parameters α is in the form

αn = α0ξ
n−1, ξ ∈ (0, 1). (10)

Since the regularization parameter is variational in each iteration, we call this iteration
process a non-stationary iterated adaptive regularization (NSIAR) method. In the follow-
ing sections, we will give a theoretical analysis of the method. This paper is organized
as follows: in sec. 2, the convergence properties of the method are presented when the
exact data are given; in sec. 3, the rate of convergence of the method is proved when the
perturbed data are obtained, hence the NSIAR can approach asymptotic optimality.

2 Convergence properties of the NSIAR for exact data

We begin from the noise-free data. In this case, the iterated version of the adaptive
regularization is generated as follows:

(H2 + αnI)xn = αnxn−1 + Hz (11)

or

xn = αn(H2 + αnI)−1xn−1 + (H2 + αnI)−1Hz, (12)

where z = T ∗y. For simplicity, we choose the initial guess value x0 = 0. Also without
loss of generality, we assume that ‖T‖ 6 1 (otherwise, a constant multiple 1

‖T‖
can be

performed on both sides of (1)), hence ‖H‖ 6 1.

Note that both the operator (H2 + αnI)−1 and the operator (H2 + αnI)−1H are
everywhere defined and bounded with ‖(H2 +αnI)−1‖ 6

1
αn

and ‖(H2 +αnI)−1H‖ 6

1
1+αn

. Therefore, for each fixed n, the sequence {xn} generated by (11) or (12) is stable
with respect to perturbations in y.
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We begin by noting that y = Tx+, so

(H2 + αnI)−1Hz = (H2 + αnI)−1H2x+

= [I − αn(H2 + αnI)−1]x+ = x+ − αn(H2 + αnI)−1x+.

From (12) and by simple calculation, we obtain

x+ − xn = αn(H2 + αnI)−1(x+ − xn−1)

= · · · = [Πn
i=1αi(H

2 + αiI)−1]x+.

Thus xn can be expressed as

xn = RNSIAR(H)x+, (13)

where RNSIAR(λ)
def
= 1 − Πn

i=1
αi

λ2+αi

and λ ∈ [0, 1].

It is clear that RNSIAR(λ) → 1 as αi → 0, i → ∞, n → ∞. Therefore, xn → x+

as i → ∞, n → ∞. In addition, the remarkable feature of the NSIAR is RNSIAR(λ) →
0 as λ → 0, which means that if the operator H = T ∗T is degenerated and has an
eigenvalue being null, then the NSIAR-inverse operator eliminates null-space components
at all, whereas for Tikhonov regularization, if the operator H = T ∗T has an eigenvalue
being null, then the filtering function RTikh(λ) = (λ + α)−1 → α−1 as λ → 0. Thus
the NSIAR is more adaptive.

If we denote rn(λ) = Πn
i=1

αi

λ2+αi

, then RNSIAR(λ) = 1 − rn(λ). Thus we have

x+ − xn = rn(H)x+.

Furthermore, if x+ = Hνω for some ω ∈ D(Hν) and ν > 0, i.e. x+ satisfies the
so-called source condition[1,5], then

x+ − xn = Sn,ν(H)ω, (14)

where Sn,ν(λ) := λνrn(λ).

The function
Sn,ν(λ)

def
= λνΠn

i=1

αi

λ2 + αi

, λ ∈ [0, 1]

plays an important role in the analysis of the errors between the exact solution x+ and the
iterates xn, where ν > 0, αi > 0 are given parameters. As we are interested in fixed
ν > 0 and n → ∞, we shall assume n > ν

2
(note that for n 6

ν
2

, Sn,ν(λ) is increasing
in λ). It is easy to find that

Sn,ν(λ) 6 λν αi

λ2 + αi

6 λ
ν

n

αi

λ2 + αi

def
= fν(λ). (15)

We call fν(λ) the dominant function. An easy calculation shows that

dfν(λ)/dλ = 0

if and only if

λ =

(

αiν

2n − ν

)1/2

as 0 < ν < 2n

or λ = 0 as ν > n.
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From (12) we see that xn can be expressed as

xn = qn(H)z, x0 := 0,

where qn(λ) is generated in the form

qn(λ) = (λ2 + αn)−1(αnqn−1(λ) + λ), q0(λ) := 0.

Similarly, for the perturbed data yδ, we have the expression

xδ
n = qn(H)zδ, xδ

0 := 0,

where qn(·) is defined as above. It follows that

1 − λqn(λ) =
αn

λ2 + αn

(1 − λqn−1(λ)),

that is, qn(λ) = 1−rn(λ)

λ
with rn(λ) = Πn

i=1
αi

λ2+αi

. We have the following estimation:

0 6 qn(λ) 6 λ−1.

Noticing the expression for xn and xδ
n by qn(·)· and xn, xδ

n ∈ D(T ), we have

‖xn − xδ
n‖2 = ‖qn(H)(z − zδ)‖2

= (qn(H)(z − zδ), qn(H)(z − zδ))

= (qn(H)T ∗(y − yδ), qn(H)T ∗(y − yδ))

6 δ2‖T‖−2,

i.e.
‖xn − xδ

n‖ 6 δ‖T‖−1.

Hence
‖Txn − Txδ

n‖ 6 ‖T‖‖xn − xδ
n‖ 6 δ.

To deeply investigate the relation between the error level δ and the regularization
parameter αi, we need the following estimation (by triangular inequality) for λ > 0:

0 6 qn(λ) 6
λ2 + 2αi

λ3 + αiλ
6

3

2
√

αi

.

Thus we obtain

‖xn − xδ
n‖2 = (xn − xδ

n, xn − xδ
n)

= (qn(H)T ∗(y − yδ), qn(H)T ∗(y − yδ))

6 ‖qn(H)qn(H)H‖δ2

6 ‖qn(H)‖δ2

6
3

2
√

αi

δ2

for any αi, i = 1, 2, · · · , n. We state the above results as the following lemma:

Lemma 3.1. For the sequence {xn}, {xδ
n}, we have the following stability results:

‖xn − xδ
n‖ 6

√

3/2
4
√

αi

δ, i = 1, 2, · · · , n

and
‖Txn − Txδ

n‖ 6 δ.
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Theorem 3.2. If αn → 0 and δ4

αn

→ 0 as δ → 0 and n → ∞, then xδ
n defined by

(17) converges to x+ = T +y.

Proof. By (13) and Lemma 3.1, the results can be easily obtained. 2

From Theorem 3.2 we know that the iteration formula (17) converges as long as the
regularization parameters αn defined by (10) do not exceed δk, k < 4. To emphasize
αn is related to δ, sometimes we also write αn as αn(δ). However we must bear in mind
that the regularization parameter αn decreases as the iteration proceeds. Therefore we
conclude that the iterations cannot proceed infinitely, in other words, the iterations should
be terminated in finite steps.

In the following, we turn to investigate the regularity of NSIAR for the noisy data
yδ. We will show that the iterative implementation of the adaptive regularization can yield
optimality. To prove the results, we need the following lemma.

Lemma 3.3. Let x+ 6= 0. Then for all δ > 0 there exists a unique α := αl(δ) for
some l ∈ N satisfying the equation

‖xn − x+‖ = δ/ 4
√

αl. (18)

Proof. Since Tx+ = Qy, where Q denotes the orthogonal projector of Y onto
R(T ), from (13) we have

xn − x+ = −Πn
i=1αi(H

2 + αiI)−1x+.

Denoting the spectral family of the operator H = T ∗T as Eλ, we have
√

α‖xn − x+‖2 =

∫ 1

0

Πn
i=1

√
αα2

i

(λ2 + αi)2
d‖Eλx+‖2.

Hence if we define

φ(α) =

∫ 1

0

Πn
i=1

√
αα2

i

(λ2 + αi)2
d‖Eλx+‖2 − δ2,

then by definition x+ ∈ N(T )⊥ and since x+ 6= 0, we know that φ(α) is continuous and
strictly and monotonically increasing with

lim
α→0

φ(α) = −δ2 and lim
α→∞

φ(α) = ∞,

which proves the lemma. 2

Lemma 3.3 together with Theorem 2.2 indicates that α := αl(δ) is continuous and
strictly and monotonically increasing with α → 0 as δ → 0 and α → ∞ as δ → ∞.
Now we prove the regularity results. We find that the rate of convergence of NSIAR can
approach asymptotic optimality.

Theorem 3.4. Let x+ ∈ R(Hν) with some ν > 0. Then ‖xδ
n − x+‖ = O(δ

4ν

4ν+1 ).

Proof. By Lemmas 3.1, 3.3 and the triangle inequality, we have

‖xδ
n(δ) − x+‖ 6 ‖xδ

n − xn‖ + ‖xn − x+‖

=

√

3/2
4
√

αi

δ + ‖xn − x+‖. (19)
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Now let αl be as in Lemma 3.3 and define

Dn =
‖xn − x+‖

αν
l

.

Then
α4ν

l D4
n = δ4/αl.

By Theorem 2.2, we conclude that Dn is upper bounded. Thus αl can be written as

αl = (δD−1
n )

4
4ν+1 .

Note that the first part of (19) is valid for any αi, i = 1, 2, · · ·. In particular, we choose
αi = αl and have

‖xδ
n − x+‖ 6

√

3/2
4
√

αi

δ + ‖xn − x+‖ = O

(

δ
4
√

αl

)

= O

(

δ
4ν

4ν+1 D
1

4ν+1

n

)

= O(δ
4ν

4ν+1 ). 2
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