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Abstract

A method of measuring energy spectrum of synchrotron radiation (SR) based on attenuation is described in this paper. Tikhonov

regularized method is applied to reconstruct the spectral distribution of SR. The feasibility of the method is studied in detail by using a

hypothetical SR spectrum. The applied results of the spectrum of 4W1B beamline in BSRF (Beijing Synchrotron Radiation Facility) are

shown.
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1. Introduction

Since synchrotron radiation (SR) was first observed in
1947, it has been applied to many fields due to its good
characters. One of the important characters is that the
spectrum of SR source can be accurately calculated. So we
often get the SR spectrum by theoretical calculation
instead of experimental measurement. But, in reality, the
feasibility of calculation is affected by many factors, for
example, fluctuations of the parameter of insertion devices
and the electron orbit, the change of acceptance angle. On
the other hand, usually we are interested in the spectral
distribution at the samples. The spectrum will be changed
when the light transmit some optical elements in the
beamline. Due to the above reasons, the experimental
measurement of spectrum of SR is important in practice.

Some methods, such as monochromatization, detector
with energy resolution and attenuation filter, have been
developed to measure X-ray spectrum. But each of these
methods has shortcomings of itself. For monochromatiza-
e front matter r 2006 Elsevier B.V. All rights reserved.
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tion method, the energy range of monochromator is
limited and the real diffraction efficiency of the crystal is
hard to confirm, which makes an exact calculation
unfeasible. Another usual method is to measure directly
by solid detector with energy resolution. In order to
avoid the detector from being saturated, some kind of
scatterer is always needed. This method overcomes the
problem of energy limitation but complex scattering
problem and the detector response have to be taken into
account.

Attenuation filter is a simple method in experiment. But
how to reconstruct the real spectrum is very difficult
because it is faced with an ill-posed problem. The earliest
method was an analytical approach using a Laplace
transformation for representing the X-ray spectral dis-
tributions in a function form [1]. Later various techniques
were developed [2–8], however, the computational results
of those methods are not satisfying. Tikhonov regulariza-
tion method, which has been applied successfully in a lot of
fields such as signal and image processing [9] and Laplace
transform [10]. It is a powerful tool to solve the operator
equations off the first kind. In this paper the experimental
method based on attenuation filter is improved and
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Fig. 2. Experiment curve. The material of the attenuation is Al.
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Tikhonov regularization method is used to rebuild the
spectrum of SR with enough accuracy.

2. Experiment method and mathematical model

2.1. Experimental geometry and components

The usual X-ray attenuation experiments were done by
adding separated filtrations with different thickness in the
light path. It is hard to reconstruct the spectral distribution
accurately because only a few discrete data can be collected
by this method. In order to obtain enough data easily, we
adopt a wedged filtration. The filtration was driven by a
step motor and at the same time its thickness was changed.

Details of the experimental setup are shown in Fig. 1.
Experiments were done at 4W1B beamline in Beijing
Synchrotron Radiation Facility (BSRF). SR is extracted at
the straight section of 4W1 of the BSRF with an
electromagnetic wiggler. The 4W1 wiggler is a single period
wavelength shifter with magnetic period length 1.36 m,
peak field of 1.8 T, and a gap 66 mm. There are two Be
windows with 250 mm and an Al windows with 260 mm in
the beamline. The slit was used to confine the incident X-
ray to 0:1 mm� 1 mm. Two ion chambers filled with Ar are
used to measure the intensity of SR. The first ion chamber
was used to monitor of the intensity of incoming beam and
the second one to record the transmitted intensity. The
experimental curve is shown in Fig. 2.

2.2. Basic equations

When SR with spectrum distribution f ðEÞ traverses the
filtration, the intensity is attenuated. The signal obtained
by second ion chamber is

IðdÞ ¼ a

Z E1

E0

f ðEÞ e�mðEÞdE½1� e�mgðEÞD�dE (1)

where E is the energy of the light, mgðEÞ is the absorption
coefficient of the gas filled in the chamber, D is the length
Fig. 1. Outline of the experimental setup. The slit was used to limit the

incident X-ray to 0:1 mm ðHÞ � 1 mm ðV Þ.
of the ion chamber, E0 and E1 are the minimum and
maximum photon energy of the incident light, respectively.
Here, a ¼ Gq=eion. G is the gain of the amplifier, q is the
electron charge, eion is the ionization energy of the gas filled
in the chamber.

Considering the wedged filtration and the width of the
beam, Eq. (1) has to be corrected

IðdÞ ¼ a

Z E1

E0

f ðEÞ½1� e�mðEÞw tanðyÞ�

mðEÞw tanðyÞ

�E½1� e�mgðEÞD� e�mðEÞd dE ð2Þ

where w is the width of the light, y is the apex angle of the
filtration.

By variable replacement, Eq. (2) can be written as

IðdÞ ¼ a

Z m1

m0

gðmÞ e�md dm (3)

where

gðmÞ ¼
f ½EðmÞ�EðmÞ e�mgEðmÞD½1� e�mw tanðyÞ�

mw tanðyÞ
dE

dm
.

Eq. (3) is a bounded Laplace transform for our detection
system. Rewriting Eq. (3) in discrete form yields y ¼ Ax.
Where y and x are column vectors with the dimensions of
m and n, respectively, and so A is an m � n matrix. These
are defined as

y ¼

Iðd1Þ
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3. Regularized solution methods

Since the Laplace equation is a special integral equation
of the first kind, hence the ill-posed nature inherits. This
means even if a least-squares error solution exists, which
may oscillate severely with the perturbation of the
observation. Therefore, some kind of regularization
technique must be involved to suppress the ill-posed
characteristic [9,10]. Let us formulate the regularization
in abstract normed space

ðLgÞðmÞ ¼ IðdÞ. (5)

We consider solve the unconstrained minimization pro-
blem

kLg� Ik2
L2
þ akgk2

W 1
2
! minimization (6)

where k � k is a normed space in Sobolev space, which
means the function g is continuous and differentiable with
the bounded norms of itself and its generalized derivatives
in L2. a is the so-called regularization parameter which is
greater than zero.

Assume that the variation of g is flat near the boundary
of the integral interval ½m0;m1�. So, the derivatives of g are
zeros at the boundary of ½m0;m1�. Now by solution of
Eq. (6), we obtain the following integro-differential
equation with boundary condition [9]

a½g00ðrÞ � gðrÞ� �

Z m1

m0

k̄ðm; nÞgðnÞdn ¼ ĪðdÞ (7)

g0ðm0Þ ¼ 0; g0ðm1Þ ¼ 0 (8)

where

k̄ðm; nÞ ¼
Z m1

m0

kðm; dÞkðn; dÞdd

ĪðdÞ ¼ �

Z m1

m0

kðm; dÞIðdÞdd

kðm; dÞ ¼ a e�md .

Eqs. (7)–(8) are the regularized form and can be used for
the solution of g. By collocation, we have

L�Lgþ aHg ¼ L�I (9)

where L� is the adjoint operator of L, H is a scale operator
which is in the form of a triangular matrix in finite space

H ¼

1þ 1=h2
�1=h2

�1=h2 1þ 2=h2
�1=h2
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. . .
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where h is the step size of the difference grid.
Suppose Eq. (9) is already a discrete matrix–vector

equation. We find that Eq. (9) can be easily solved since the
coefficient matrix L�Lþ aH is positive definite for some
a40. Note that this kind of choice of the regularization
parameter is not optimal. Practically, the regularization
parameter a is closely related with the noise level. There-
fore, we apply the parameter choice method developed in
Ref. [10], i.e., the optimized parameter a� is the root of the
following nonlinear equation:

CðaÞ ¼ kLga � Ik2
L2
� d2 (10)

where d is the noise level in ð0; 1Þ.
It is easy to show that CðaÞ is differentiable. Therefore,

fast algorithms for solving a� can be implemented, say
cubic convergent algorithm developed in Ref. [10]

akþ1 ¼ ak �
2CðakÞ

C0ðakÞ þ ðC0ðakÞ
2
� 2CðakÞC00ðakÞÞ

1=2
(11)

Denoting by bðaÞ ¼ kgak
2, we have

C0ðaÞ ¼ �ab0ðaÞ,

C00ðaÞ ¼ �b0ðaÞ � 2a
dga

da

����
����

2

þ ga;
d2ga

da2

� �" #

Finding ga; dga=da; d2ga=da2 will lead to solve the follow-
ing equations:

ðATAþ aHÞgak
¼ ATI ð12Þ

ðATAþ aHÞg0ak
¼ �Hgak

ð13Þ

ðAT Aþ aHÞg00ak
¼ �2Hg0ak

. ð14Þ

For the solution of the linear matrix–vector equations
(12)–(14), we use the Cholesky decomposition method. A
remarkable characteristic of the solution of (12)–(14) is that
the Cholesky decomposition of the coefficient matrix
ATAþ aH needs only once, then the three vectors
ga;dga=da; d2ga=da2 can be obtained cheaply.

4. Numerical theoretical simulation

In order to testify the stability and reliability of the
algorithm we generated a theoretical spectral distribution,
which is shown in Fig. 3b, according to the parameters of
4W1A beamline in BSRF. The energy range of the object
distribution is from 4 to 30 keV. The material for
attenuation is Al whose thickness was chosen from 0 to
10 mm and the absorption coefficients were quoted from
Ref. [11]. Fig. 3





shows the results after adding noise. The effects of the noise
to the simulated attenuation curve can be seen clearly in the
partial enlarged detail.

The numerical inversion results of the two curves with
noise are shown in Fig. 5b. The errors between the true and
the computational results are shown in Fig. 6. It indicates
that the numerical inversion results and the object
distribution are very similar. The noise increases 9 times
but the errors between the true and the numerical inversion
results increase only one time. This shows that the
algorithm is stable and reliable.

5. Results and discussion

All experiments were done at 4W1B beamline in BSRF.
In our experiments the thickness of the tip of the filtration
is about 0:25 mm. It means that SR will be absorbed by an
Al foil of 0:25 mm before we measure it. Therefore, inoise
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measurements were carried out at 4W1B beamline in
BSRF, and the numerical results can be proved to be
reliable. Facing with such an ill-posed problem, Tikhonov
regularization method exhibits good stability.

The stable algorithm and plenty of experimental data
ensure the reliability of reconstructed spectrum. This
method can be used to measure the spectrum of X-ray.
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