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Abstract
In this paper we propose a cubically convergent algorithm. Our basic tool is the
Tikhonov regularization and Morozov’s and damped Morozov’s discrepancy
principles. Numerical experiments for integral equations of the first kind are
presented to compare the efficiency of the proposed algorithms.

1. Introduction

It is well known that inverse problems are encountered in many fields of application ranging
from science to engineering [3,5,11]. These problems often lead to solving operator equations
of the first kind, which, by their nature, are ill-posed in the sense of Hadamard [3, 11]. This
means that the required solution is extremely sensitive to the perturbations in the observation
data. Thus some kind of regularization method must be utilized to obtain the stable resolution
of the problems.

So far, a great amount of research work has focused on the development of appropriate
strategies for selecting the regularization parameter (see [3, 4, 9, 12] and references therein).
However, Kunisch and Zou [8] have pointed out that much less work has been carried out on the
numerical realization of such strategies, and in fact it appears that very few of the strategies are
utilized for practical applications. One of the causes may be the huge amount of computation
required in the iterative process of choosing a reasonable regularization parameter.

Some existing efficient methods for solving the discrepancy principle are the Newton
method with quadratical convergence and the quasi-Newton method with superlinear
convergence (see [8]). This paper presents a cubic convergence algorithm. Like the Newton
method and the quasi-Newton method, this new method could be used for most of the posteriori
parameter choice strategies.

Let us consider a linear ill-posed inverse problem of the form

Az = u (1)
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where A : F −→ U is a bounded linear operator with domain D(A) in a Hilbert space F
and with its range R(A) in a Hilbert space U and u ∈ U . Here we call problem (1) ill-posed
in the sense that the solution of (1) does not depend continuously on the right-hand side data
which are often obtained by measurement and hence contain errors. Let us assume that uδ are
observation data of u, and

‖uδ − u‖ � δ (2)

with a given noise level δ > 0. Now the computation of solution (1) from the observation data
uδ becomes an important topic.

Among the methods developed to solve linear ill-posed problems, Tikhonov regularization
is the most well known one. In this method, the solution zαδ of the minimization problem

Mα[z, uδ] = {‖Az− uδ‖2 + α‖z− z∗‖2} (3)

is used to approximate the solution of (1), where α > 0 is the regularization parameter and
z∗ ∈ D(A) is an a priori guess of solution (1). Under appropriate conditions onA, the stability
of zαδ with respect to uδ can be guaranteed, and with a suitable choice of α, zαδ can be guaranteed
to converge to a z∗-minimum-norm-solution (z∗-MNS) z† of (1), i.e. converge to an element
z† ∈ F with the property

Az† = u and ‖z† − z∗‖ = min
z∈D(A)

{‖z− z∗‖ : Az = u}. (4)

Now the regularization parameter α affects not only the convergence of zαδ but also the rates
of convergence, and hence the choice of regularization parameter is vital.

Obviously (3) is equivalent to the following so-called Euler equation:

(A∗A + αI)(z− z∗) = A∗(uδ − Az∗) (5)

whereA∗ denotes the Hilbert-adjoint operator ofA, I denotes the unit operator. The following
theorem is verified by Kunisch and Zou in [8].

Theorem 1. The solution zαδ of the Euler equation (5) is infinitely differentiable at every α > 0,
which satisfies the following equations:

(A∗A + αI)
dzαδ
dα

= −(zαδ − z∗), (6)

(A∗A + αI)
dkzαδ
dαk

= −k dk−1zαδ

dαk−1
, k = 2, 3, . . . . (7)

2. A cubic convergence algorithm

Morozov’s discrepancy principle has been used for linear ill-posed problems to choose the
regularization parameter and α is determined from the following nonlinear equation:

‖Azαδ − uδ‖ = δ. (8)

In some applications, the Morozov principle may not be so satisfactory. For example, if
the exact solution z† satisfies z† − z∗ ∈ R((A∗A)ν) for some ν > 1

2 , the optimal convergence
of the regularized solutions is not obtained [3]. We therefore consider a more general class of
the damped Morozov principle [7, 9] given by

‖Azαδ − uδ‖2 + αγ ‖zαδ ‖2 = δ2 (9)

where γ ∈ [1,∞]. Obviously, the exact Morozov principle (8) is a special case of the damped
case with γ = ∞.
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Throughout this section we assume that uδ /∈ kerA∗. We observe that equations (8) or (9)
can be expressed in terms of α as

φ(α) := ‖Azαδ − uδ‖2 − δ2 (10)

or

φ(α) := ‖Azαδ − uδ‖2 + αγ ‖zαδ ‖2 − δ2. (11)

The following lemma (also in [8]) tells us that the first-order derivative of φ(α) is positive.
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is no longer so essential. However, in our opinion, our method is easier to code and perform
compared to his approach and it is more efficient than the traditional Newton method and
quasi-Newton method.

Now we give the following algorithm.

Algorithm 1 (Cubic convergence algorithm).

Step 1. Input α0 > 0, δ > 0, ε(tolerance) > 0, A, kmax, uδ , z∗, set k := 0;
Step 2. Solve equations (16)–(18);
Step 3. Compute φ(αk), φ′(αk) and φ′′(αk);
Step 4. Solve for αk+1 from iterative formula (13).
Step 5. If | αk+1 − αk |� ε or k = kmax, STOP; otherwise, set k := k + 1, GOTO step 2.

Notice that (13) can be written as

αk+1 = αk − φ(αk)

φ′(αk)
2

1 + (1 − 2t (αk))
1
2

, (19)

where, t (αk) = φ′′(αk)φ(αk)
φ′(αk)2

. Define the iteration function:

F(α) = α − φ(α)

φ′(α)
G(α), (20)

here, G(α) = 2

1+(1−2t (α))
1
2

. Then (19) is equivalent to

αk+1 = F(αk). (21)

We know the functions φ(α),G(α) are both infinitely differentiable, and if we let α∗ be the
single root of φ(α) ∈ (0, 1), then t (α∗) = 0, G(α∗) = 1. It should be pointed out here that it
can be ensured that the term 1−2t (α) is positive. Sinceα ∈ U(α∗, ε) (i.e., the ε-neighbourhood
of α∗), and notice that φ′′(α) is bounded in (0, 1), so 1−2t (α) = 1−2 φ

′′(α)φ(α)
φ′(α)2 can be ensured

to be positive in U(α∗, ε) if ε is sufficiently small. Therefore the iteration formula makes
sense. Now we introduce a well known general pth order convergence result in the following
theorem.

Theorem 3. Let αk+1 = F(αk) be an iteration process, if F (p)(α) (p = 1, 2, . . .) are
continuous at U(α∗, ε), and

F ′(α∗) = F ′′(α∗) = · · · = F (p−1)(α∗) = 0, F (p)(α∗) �= 0,

then the iteration process is pth order convergent at U(α∗, ε).

Now we give a short proof of the following theorem.

Theorem 4. Assume that equations (10) or (11) have a root at α = α∗, i.e. φ(α∗) = 0, then
∃ U(α∗, ε) and ε > 0, such that ∀α0 ∈ U(α∗, ε), the sequence {αk}∞k=1 generated by the above
algorithm is locally cubically convergent.

Proof. Obviously F(α) in (20) is infinitely differentiable with respect to α at U(α∗, ε).
Defining s(α) = φ(α)

φ′(α) , we compute that

s ′(α) = 1 − t (α),
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Step 3. Solve for αk+1 the Morozov equation

m(α)− αm′(α) = δ2. (29)

Step 4. If | αk+1 − αk |� ε, STOP; otherwise set k := k + 1 GOTO (1).

In step 1 of algorithm 2, one needs to compute Tk and Ck from (27) and (28).
Combining (27) and (28) we have

Tk = α2
kf

′(αk)
f (αk)− αkf ′(αk)

, Ck = f 2(αk)

f (αk)− αkf ′(αk)
. (30)

Since uδ /∈ kerA∗, the denominators in (30) do not vanish.
Kunisch and Zou [8] noticed that the two-parameter algorithm is only useful during the

first few iterations (one to three iterations), so combining algorithm 1 with 2, we give a hybrid
algorithm.

Algorithm 3 (Hybrid algorithm).

Step 1. Select α from algorithm 2 after two iterates;
Step 2. Take the above α as the initial value α0 in algorithm 1 and implement algorithm 1.

We can also consider combining the Newton method with the two-parameter algorithm
(TPA) (see [8]), since the TPA is useful for giving a good initial guess value. Another hybrid
algorithm is given in [8], i.e. combining the quasi-Newton method with the TPA.

Remark 2. Since the two-parameter strategy can provide us with a good initial guess α0 value,
the hybrid algorithms will be much better.

4. Numerical experiments

The purpose of this final section is to illustrate the theory from the previous sections with two
numerical examples. The numerical experiments are completed with MATLAB 5.1 on an SGI
workstation.

Throughout this section TPA denotes the two-parameter algorithm [8], Newton + TPA
denotes Newton’s method with the TPA, QN + TPA denotes the quasi-Newton method [8]
with the TPA, CCA denotes algorithm 1 and HA denotes the hybrid algorithm.

The first example is a one-dimensional model problem in image reconstruction from [10]
(also in [6]), which solves the Fredholm integral equations of the first kind:

(Az)(s) =
∫ π

2

− π
2

k(s, t)z(t) dt = u(s), s, t ∈
[
−π

2
,
π

2

]
(31)

with kernel

k(s, t) = (cos s + cos t)

(
sin r

r

)
, r = π(sin s + sin t).

For the solution z we choose a simple function with two ‘humps’:

z(t) = 2 exp (−6(t − 0.8)2) + exp (−2(t + 0.5)2) (32)

as the true solution zT, and we have chosen the values of the right-hand side u(s) of (31) on
the grid{si}mi=1 in [−π

2 ,
π
2 ] in accordance with the following rule.

As vector u at the right-hand side we have used the vector obtained by multiplication of
the (m× n)-dimensional matrix A, approximating the operator in (31), by the column vector
zT of values of the exact solution on the grid {ti}ni=1 in the interval [−π

2 ,
π
2 ]:

ui =
n∑
j=1

Aij zT(tj ). (33)
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Table 1. The comparison of efficiency for five algorithms for Morozov’s discrepancy principle.

Algorithms Iter. α∗ ‖zα∗
δ − zT‖ ‖Azα∗

δ − uδ‖/‖uδ‖
Newton + TPA 5 1.1176e−6 1.77e−2 6.2527e−6
CCA 9 1.1176e−6 1.77e−2 6.2528e−6
TPA 7 1.1176e−6 1.77e−2 6.2526e−6
HA 5 1.1176e−6 1.77e−2 6.2526e−6
QN + TPA 13 1.1176e−6 1.77e−2 6.2527e−6

This way of choosing the right-hand side guarantees that the minimum of the discrepancy
functional ‖Az − uδ‖2 on this set of vectors will be zero. This property of the solution
is essential when using properties of iteration algorithms for solving ill-posed problems.
Tikhonov et al [12] has pointed out that a common property of the majority of iteration
algorithms is the rapid decline of the functional. Therefore an important characteristic of
iteration algorithms is the actual minimal level of the discrepancy functional up to which
the minimization process runs in real time. This parameter makes it possible to estimate
beforehand the error in specifying the initial information for which it makes sense, then apply
the given method. Or, conversely, to choose on the basis of the error in specifying the initial
information an algorithm that is most suitable for solving the given problem. So, if in model
problems we can minimize in real time the discrepancy functional to the 1% level (in relation
to the norm of the right-hand side), then it is clear that when using this algorithm we can, in
general, successfully solve problems in which the error of specifying the initial information is
0.1%.

For this reason, we study the level up to which we can minimize the discrepancy and use
the right-hand side of (31) computed in accordance with (33).

To evaluate the integrals involved, we choosem = n = 100 to divide the interval into 100
subintervals, and on each subinterval the rectangular quadrature rule is used. The accuracy of
specifying the right-hand side is assumed to be equal to δ = 1.0 × 10−4.

In general, when hich
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Table 2. The comparison of CPU time for five algorithms for Morozov’s discrepancy principle,
where [·] denotes iterates.

m, n Newton + TPA CCA TPA HA QN + TPA

100 0.05[5] 0.12[9] 0.08[7] 0.06[5] 0.12[13]
200 0.45[7] 0.77[10] 0.73[11] 0.44[6] 0.84[15]
300 1.31[6] 2.75[11] 2.02[9] 1.18[5] 3.17[16]
400 3.38[6] 6.79[11] 5.14[9] 2.99[5] 8.39[16]
600 13.08[7] 21.89[11] 17.12[9] 9.70[5] 28.45[16]

Table 3. The impact of the γ value on the choices of regularization parameters by utilizing HA for
damped Morozov’s discrepancy principle.

γ Iter. α∗ ‖zα∗
δ − zT‖ ‖Azα∗

δ − uδ‖/‖uδ‖
1.0 6 1.0036e−10 1.6206e−4 1.9322e−8
1.2 10 4.6559e−9 2.4234e−4 3.0637e−8
1.3 12 2.2031e−8 6.7713e−4 1.1813e−7
1.5 11 2.1053e−7 3.9000e−3 1.2117e−6
2.0 10 1.1105e−6 1.7600e−2 6.2141e−6
4.0 10 1.1176e−6 1.7700e−2 6.2527e−6
∞ 10 1.1176e−6 1.7700e−2 6.2528e−6

Table 4. Comparison of the five algorithms for Morozov’s discrepancy principle with different
error level δ.

δ = 10% δ = 1% δ = 0.1%
Error level

Algorithms Iter. ‖zα∗
δ − zT‖ Iter. ‖zα∗

δ − zT‖ Iter. ‖zα∗
δ − zT‖

Newton + TPA 5 3.8740e−1 4 1.2910e−1 3 4.46e−2
CCA 3 3.8740e−1 4 1.2920e−1 5 4.03e−2
TPA 8 3.8740e−1 6 1.2900e−2 5 3.91e−2
HA 3 3.8740e−1 3 1.2900e−2 2 4.46e−2
QN + TPA 7 3.8740e−1 8 1.2900e−2 5 4.94e−2

Table 3 compares the impact of the γ value on the choice of regularization parameter for
damped Morozov’s discrepancy principle. With the appropriate choice of γ value, we can
improve the accuracy of the solution. Obviously, as γ = 1.0, 1.2, 1.3, the absolute error
‖zα∗
δ − zT‖ is much smaller than using Morozov’s discrepancy principle.

Table 4 gives us a comparison of the five algorithms for different error levels. From the
table we see that the HA is the most efficient algorithm to obtain the same accuracy of the
solution.

Figure 1 gives us a plot of the exact solution (dotted curve) and the approximate solution
(open circles) by utilizing the HA algorithm. We use the damped Morozov discrepancy
principle for this example, in which γ is chosen as 1.0, α0 = 0.1, δ = 1.0×10−4,m = n = 50.

We close this section with a second example from [13]. Varah [13] presented an example
for inverse Laplace transform. In the notation of equation (1) the problem he considered is
defined by

(Af )(s) =
∫ tmax

tmin

k(s, t)f (t) dt = g(s), s ∈ [smin, smax], (34)

where, the integral kernel is k(s, t) = exp (−st), the exact right-hand side is g(s) = 1
(s+1)2 ,

[tmin, tmax) = [0,∞), (smin, smax) = (−1,∞). Through simple manipulation, we compute
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α0=0.1,

ˆ

δ=1% for Morozov’s

discrepancy principle.

Algorithms Iter.

α∗

‖fα∗δ−fT‖‖ Afα∗ δ−g
δ‖/ ‖gδ‖

Newton + TPA 6 364279e

−4 3646e−2 5.50e −3

CCA 5 364270e

−4 3630e−2 5.50e −3

TPA 69 366851e

−4 3661e−2 5.50e −3

HA 4 364270e

−4 3630e−2 5.50e −3

QN + TPA 10 367455e

−4 3667e−2 5.50e −3

Table 6. Convergence of the HA with α0=0.1,γ=1.4 for damped Morozov’s discrepancy

principle.

˜

δ1% 2% 4% 7% 10%Iter.66655

α∗721807e−5 1.828 e−4 466172e−4 92220 e−4 1.6e−3‖fα∗δ−fT‖2.59e−2 3606e−2 3682e−2 5.24e−2 8.53e−2‖Afα

∗

δ−gδ‖‖gδ‖

5.40e−3 1208e−2 2.15e−2 3676e−2 5.36e−2

thattheexactsolutionisfT(t)=texp( −t ) . Inordertosimulatemeasurementinaccuracieswe add noise to the right-hand side gas follows:gδ(s) =g+ˆ
δ×rand(s),where rand(s)is random perturbation to the right-hand side andˆ

δis the noise level. Ourpurpose is to numerically reconstruct the exact solution f from gδ.In our simulations we restrict [tm i n , t m a x ]=[sm i n , s m a x ]=[0,10]. We choosem=n=100 and use the mid-point rule to get a discrete equation. Let the other notations be the sameas in the first example; the numerical results are shown in tables 5–8.From tables 5–7 we see that the HA algorithm works really well even with Gaussian whitenoise. The absolute error

‖fα

∗δ−fT‖can keep up to O(10−2).Table 8 gives us a comparison of the impact of theγvalue on the choice of regularizationparameter for the damped Morozov discrepancy principle. The noise level isˆδ =5%. Wesee that the absolute error‖f
α∗δ−fT‖forγ=1.5 is smaller than for the otherγvalue.
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Table 7. Convergence of the HA with α0 = 0.1 for Morozov’s discrepancy principle.

δ̃ 1% 2% 4% 7% 10%
Iter. 4 4 4 5 5

α∗ 3.4270e−4 7.7413e−4 1.7000e−3 3.3000e−3 4.9000e−3

‖f α∗
δ − fT‖ 3.30e−2 5.21e−2 7.12e−2 8.65e−2 9.87e−2

‖Af α∗
δ − gδ‖
‖gδ‖ 5.50e−3 1.10e−2 2.19e−2 3.82e−2 5.44e−2

Table 8. The impact of γ ’s value on the choices of regularization parameters by utilizing HA for
the damped Morozov discrepancy principle, δ̂ = 5%, α0 = 0.1.

γ Iter. α∗ ‖f α∗
δ − fT‖ ‖Af α∗

δ − gδ‖/‖gδ‖
1.0 8 4.1139e−5 3.075e−1 2.67e−2
1.2 6 2.1140e−4 1.20e−1 2.68e−2
1.3 6 6.2148e−4 4.28e−2 2.69e−2
1.5 5 9.1251e−4 3.80e−2 2.70e−2
2.0 5 2.10e−3 7.28e−2 2.73e−2
4.0 5 2.20e−3 7.71e−2 2.73e−2
∞ 5 2.20e−3 7.71e−2 2.73e−2
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Figure 2. Reconstructions after five iterations.

Therefore the choice of γ is crucial. For actual computations one will have to use experience
with synthetic data to choose γ .

Figure 2 gives us a plot of the exact solution (dotted curve) and the approximate solution
(open circles) by utilizing the HA algorithm. We use the damped Morozov discrepancy
principle for this example; where γ is chosen as 1.4, α0 = 0.1, δ̂ = 10%, m = n = 100.

5. Conclusion

From the above two examples we conclude that the HA is the fastest algorithm. This is not by
chance. Because the TPA can ensure the selection of a reasonable initial α0 value, with this α0

value the CCA can realize the fast numerical implementation of selecting the regularization
parameter so as to obtain the stable regularization solution.

However, we should point out that all the algorithms presented in this paper use direct
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solvers to solve equations (16), or (17) and (18). As a consequence of this the time cost is
still high, especially for large-scale problems (say, two- and three-dimensional problems). We
suggest the user applies either our cubic convergent method or Newton’s method or hybrid
algorithms for problems of small size or for one-dimensional problems. For large problems,
one should use the iterative solvers (such as the conjugate gradient method) instead.
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