--14 4 % 3, , , and the setting 1.

- 433/ 3 - 3 - 3 - 3 - 3

- 31 - 32 - 32 - 3 - 33 - 3 - 4 - 3 - A

=

\$_____

$$\| \delta - \| \leqslant \delta$$

$$\delta = \{ \| - \delta \| \alpha \| - * \| \}$$

$$= \mathbf{A} || - *|| = \underbrace{\mathbf{A}}_{\in} \{|| - *|| = \}$$

 * α - * = * $_{\delta}$ - *

1. The l ti $\frac{\alpha}{\delta}$ f the E le e_{-} ati (5) i i itel diffe e tiable at $e^{\vartheta}e_{-}\alpha_{-}$, which ati e the f ll wige_ati :

*
$$\alpha \frac{\alpha}{\alpha} \frac{\alpha}{\alpha} = - \frac{\alpha}{\delta} - *$$

* $\alpha \frac{\alpha}{\alpha} \frac{\alpha}{\alpha} = -\frac{\alpha}{\alpha} \frac{\alpha}{\alpha} = -$

2.

$$\| \quad \overset{\alpha}{\delta} - \quad \delta \| = \delta$$

$$\| \quad \overset{\alpha}{\delta} - \quad \delta \| = \delta$$

$$\| \quad \overset{\alpha}{\delta} - \quad \delta \| \quad \alpha^{\gamma} \| \overset{\alpha}{\delta} \| = \delta$$

$$\overset{\alpha}{\delta} - \quad \delta \| \quad \alpha^{\gamma} \| \overset{\alpha}{\delta} \| = \delta$$

 $\alpha = \| \quad \overset{\alpha}{\delta} - \delta \| \quad \alpha^{\gamma} \| \overset{\alpha}{\delta} \| - \delta$ $\alpha = \| \quad \overset{\alpha}{\delta} - \delta \| \quad \alpha^{\gamma} \| \overset{\alpha}{\delta} \| - \delta$ $\alpha = \| \quad \overset{\alpha}{\delta} - \delta \| \quad \alpha^{\gamma} \| \overset{\alpha}{\delta} \| - \delta$

1(). Sie 1. $\alpha = \delta = \epsilon + \epsilon = 4$ Ste 2. 33, Ste 5. $|\alpha - \alpha| \leq \epsilon = 4$ $\alpha = \alpha - \frac{\alpha}{\alpha} - \frac{\alpha}{\alpha} - \frac{\alpha}{\alpha}$ $\alpha = \alpha - \frac{\alpha}{\alpha} \quad \alpha$ $\alpha = - \alpha^{-1} \quad \Rightarrow \quad \alpha = - \alpha^{-1}$ $\alpha = \alpha$ $\alpha \in \alpha^{*} = \alpha^{*} =$ $\alpha \in \alpha^* \in \mathbb{R}$. ** τα*ε ε ««ε μ, τε «ε **b** -3 - 3 % 3 34

3. Let $\alpha = \alpha$ be a ite ati ce, if $\alpha = a e$ c ti $\alpha^* \epsilon$, a d

$$\alpha^* = \alpha^* = \cdots = \alpha^* = \alpha^* \neq \alpha^* \Rightarrow \alpha^* \neq \alpha^* \Rightarrow \alpha^* \Rightarrow$$

the the ite ati ce i th de c ye ge t at $\alpha^* \in$.

 $A = e \text{ that } e \text{ ati} \quad (10) \quad (11) \text{ have } a \text{ t at } \alpha = \alpha^*, \text{ i.e. } \alpha^* = \text{, the}$ $\exists \quad \alpha^* \in a \ d \in \quad , \quad ch \text{ that } \forall \alpha \in \quad \alpha^* \in \text{, the } e \text{ ce} \{\alpha\}_{=}^{\infty} \text{ ge e ated b the ab ve}$ alg ith i l call c bicall c ve ge t.

$$\alpha = \frac{\alpha}{\alpha} \quad \forall \alpha = - \alpha \quad \forall \alpha = 0$$

- A A A ARA ALL ALL ARA

· α*

*

Ste 3. τα τ. τ. $\alpha - \alpha ' \alpha = \delta$ $= \frac{\alpha \ ' \alpha}{\alpha \ -\alpha \ ' \alpha} = \frac{\alpha}{\alpha \ -\alpha \ ' \alpha}$ 3 ().). ~ 4 ~ ~ % ~ ~ ~ Ste 1. 33 α - 4 • • $=\int^{-}$ \blacktriangleleft = \in $\left[- -\right]$ % ... (----) = − −
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 . = %**:** 3 _ ~ * بر ج $=\sum$

and a set \$ 3324 and a star

1. 3	Ч . 2	3	3	- · · · ·	<u>~</u> .4	~	2. 4 . A	
, <u>~</u> 4	3	α^*		$\parallel \frac{\alpha^*}{\delta} -$		$\frac{\alpha^*}{\delta}$ –	- δ δ	
**		,	-	, °-	,	3	_	
		,	-\$-	, ~	,	3	_	
		,	-\$, ° - -	,	3	_	
		,	-\$, ° - -	,	3	_	
	_	,	-8-	, 3-	,	5	_	

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

¥ 3	28 - M 18 . 8 . 18	2. 3.			
-	3%				
	,	,	,	,	' _
	,	,	1 _	,	,
	'_	,	,	,	_'
	'	,	,	,	'_
	_!	,	,	,	,
	!	,	,	,	1

γ	. 7.	α^*		$\parallel \frac{\alpha^*}{\delta} - \parallel$	$\ \ \delta^{\alpha^*} - \delta \ $	8
,			-	. ,	-5-	
,		,	-\$-			
		,		-5-	-5	
,		,		, -	- F	
,		,	-\$-	, -	, -	
,		,		, ° - -	.	
∞		,	-2-	, ~ ~	5	

	$\delta = \%$			($\delta = \%$			$\delta = \%$	
2 4		$\ \delta^{\alpha^*}$	-	3	$\ \delta^{\alpha^*}$	-	3/	$\parallel {}^{\alpha *}_{\delta} - \parallel$	
3%		_!	÷		,	3 —	_	, 3-	
		_!	-8		,	3 —		-3	
		_!	-8		,	3 —			
		_!	-4		,	-5-		, ~	
		_!	-\$-		,	-2-		, 3—	

 $\| \frac{\alpha^{\ast}}{\delta} - \| \|_{\infty} + \frac{\alpha^{\ast}}{\delta} + \frac{$

 $\begin{array}{c} \mathbf{x} \\ \mathbf$ ·

> = \int_{-4}^{-4} = \in \mathbf{u} \mathbf{u}

•	2, 2 2 3	$\overset{\infty}{\sim}$ α =	1 1 1	بر قرا	·
$\tilde{\delta}$	%	%	%	%	%
3					
α*	-5	-8	- F		-3
$\ \delta^{\alpha^*} - \ $		-5	.	, ° - -	.
$\frac{\ \frac{\alpha^*}{\delta} - \frac{\delta}{\delta} \ }{\ \frac{\delta}{\delta} \ }$, ~	, "\$ —	, ` ₽		, 3-

 $\mathbf{A} = \mathbf{A} + \mathbf{A} +$

γ	2	α^*		$\parallel \delta^{\alpha^*} - \parallel$	II	$_{\delta}^{\alpha^{*}}$ –	$\delta \parallel \parallel \delta \parallel$
,		,	-4	_ *	,	-	
,		,	-47	-3	,	-5	
1_		,	-47	-3	,	-5	
,		,	-\$-	-5	,	-	
,		,	~	.	,	-	
,		,	~	.	,	-	
∞			3-	. 3_		3_	

• •

- 4 3 % → 4 → % 内に 2 3 3 3 α **ν τ α τ τ α** ير جهار با 3 3 3 . . . J 44 3/ % · · / %

Here and the second sec

I've e P ble i the Mathe atical Scie ce 21 1 2 2 4

 $I^{v}e \ e \ P \ b \ e$ $P \ b \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ P' \ d \ P \ b \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ P' \ d \ P' \ d \ f \ S \ P' \ g \ I \ c \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ Me'h \ d \ f \ S \ P' \ g \ I \ c \ e \ Me'h \ d \ f \ S \ P' \ g \ S \ d \ S \ Me'h \ d \ f \ S \ P' \ g \ S \ d \ S \ Me'h \ d \ f \ S \ Me'h \ d \ f \ S \ P' \ g \ S \ d \ S \ Me'h \ S \ Me'h \ d \ S \ Me'h \ d \ S \ Me'h \ d \ S \ Me'h \ S \ Me'h \ S \ Me'h \ d \ S \ Me'h \$

J. Math. A al. A l. 3 Sl ti fIll-P ed P ble % N e ical Meth d f the Sl ti f Ill-P ed P ble

SIAM J. N e. A al. 10