
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 21 (2005) 821–838 doi:10.1088/0266-5611/21/3/003

Convergence and regularity of trust region methods
for nonlinear ill-posed inverse problems

Yanfei Wang1,2 and Yaxiang Yuan2

1 State Key Laboratory of Remote Sensing Science, Jointly sponsored by the Institute of Remote
Sensing Applications, Chinese Academy of Sciences and Beijing Normal University,
PO Box 9718, Beijing, 100101, People’s Republic of China
2 State Key Laboratory of Scientific and Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
PO Box 2719, Beijing, 100080, People’s Republic of China

E-mail: yfwang@irsa.ac.cn

Received 19 August 2004, in final form 15 February 2005
Published 11 March 2005
Online at stacks.iop.org/IP/21/821

Abstract
Trust region methods have been well developed for well-posed problems,
but there is little literature available on their applications to ill-posed inverse
problems. In this paper, we apply trust region methods for solving nonlinear ill-
posed inverse problems. In particular, we study the convergence and regularity
of the standard trust region method when applying it to ill-posed problems. We
also show that the trust region method is a regularization. A numerical test
on inverse gravimetry is included to demonstrate our theoretical analysis and
regularization property of the trust region method.

1. Introduction

In scientific and engineering computing, it is a key matter to solve nonlinear operator equations

F(x) = y (1)

numerically in a stable way, where x is unknown, y is given data or observations and
F : D(F) ⊂ X −→ Y is a nonlinear operator, X and Y are both Hilbert spaces. A typical
example is the following nonlinear Fredholm integral equation of the first kind

F(x)(t) =
∫ b

a

k(t, s, x(s)) ds = y(t), s ∈ [a, b], x ∈ X, (2)

where k

http://dx.doi.org/10.1088/0266-5611/21/3/003
http://stacks.iop.org/ip/21/821

822 Y Wang and Y Yuan

in general, which is known as ill-posed problems. For instance, neither condition (1) nor
condition (2) holds if F does not have a closed range. Also it is well known that if x is uniquely
determined by y, the mapping y → x may still lack continuity. This gives severe numerical
trouble especially when the given data yδ are noisy,

‖yδ − y‖ � δ. (3)

Therefore, for ill-posed problems, a regularization method needs to be used to obtain reasonable
approximations to the solution x of equation (1).

After using regularization methods, the ill-posed problem is replaced by a stabilized
problem (see [4, 6, 13, 16]). In particular, one solves the following unconstrained optimization
problem:

min
x∈X

Jα[x, y] := ‖F(x) − yδ‖2 + α�(x), (4)

where α > 0 is called the regularization parameter, �(x) serves as the stabilizer which
stabilizes the minimization process and also provides a priori information about the solution.
The above method is known as the Tikhonov regularization. The typical selection of the
stabilizer is �(x) = ‖x‖2. In this case, the solution xα satisfies the first-order necessary
condition

F ′(xα)∗(F (xα) − yδ) + αxα = 0, (5)

but the above problem is still not suitable for numerical computation in general. The numerical
solution of the minimization problem (4) requires the linearization of the function F(x). This
can be done by Taylor’s expansion of F(x) at the kth iteration point xk , thus the minimization
problem becomes

min
ξ∈X

Jα[ξ, y] := ‖yδ − F(xk) − F ′(xk)ξ‖2 + α�(ξ), (6)

where ξ is the search direction, by a proper choice of the parameter α, the new iteration
point can be calculated by xk+1 = xk + ξk . For simplicity, in the following, we assume that
�(·) = ‖·‖2. Equation (6) can be solved through the first-order necessary condition

(F ′(xk)
∗F ′(xk) + αI)ξ = F ′(xk)

∗(yδ − F(xk)). (7)

This equation is known as the Euler equation, which is the regularization of the linear equation

F ′(xk)ξ = yδ − F(xk). (8)

The key matter in equation (7) is the choice of the regularization parameter α. If α is chosen
properly, problem (7) is well-posed, see, e.g., [4, 13]. However, α often has to be chosen
a posteriori, and iterative methods for its determination have to be applied. Sometimes, it is
difficult to find a posteriori criterion, say, the problems in remote sensing due to too much
uncertainty. In such cases, we have to resort to other methods.

Apart from the Tikhonov regularization method, the Levenberg–Marquardt method is
another stable method for solving nonlinear operator equations. Recently, this method has
also been applied for solving the inverse ground water filtration problem and has been proved to
be a regularization when the Levenberg–Marquardt parameter satisfies Morozov’s discrepancy
principle (see [8]).

Trust region methods have been widely used for solving nonlinear problems. The
Levenberg–Marquardt method can be considered as a special case of the trust region method.
But trust region methods are more direct in practical computation. In the trust region method,
one adjusts the trust region radius instead of the Levenberg–Marquardt parameter. The trust

Convergence and regularity of trust region methods 823

region method is usually generated in the following way: first, we form the minimal least
squares problem

min
x∈X

J (x) := 1
2‖F(x) − yδ‖2. (9)

Then at each iteration a trial step is calculated by solving the subproblem

min
ξ∈X

ψk(ξ) := (grad(J)k, ξ) + 1
2 (Hess(J)kξ, ξ), (10)

s.t. ‖ξ‖ � �k, (11)

where grad(J)k is the gradient of J at the kth iterate,

grad(J)(x) = F ′(x)∗(F (x) − yδ), (12)

Hess(J)k is the Hessian of J at the kth iterate,

Hess(J)(x) = F ′(x)∗F ′(x) + F ′′(x)∗(F (x) − yδ) (13)

and �k is the trust region radius. The trust region subproblem (TRS) (10)–(11) is an
approximation to the original optimization problem (9) with a trust region constraint which
prevents the trial step being too large.

In many cases, the second term of (13) is difficult to compute or the computation is too
costly. The easiest way is to ignore the second term. For the Gauss–Newton method, we solve
the following problem at the kth iteration:

F ′(xk)
∗F ′(xk)ξ = −F ′(xk)

∗(F (xk) − yδ), xk+1 = xk + ξ.

While for the Levenberg–Marquardt method, we solve the following problem at the kth
iteration:

(F ′(xk)
∗F ′(xk) + αkI)ξ = −F ′(xk)

∗(F (xk) − yδ), xk+1 = xk + ξ,

and adjust the Levenberg–Marquardt parameter αk in an appropriate way.
For ill-posed problems, a way of adjusting αk is by Morozov’s posteriori discrepancy

principle, say [4, 6, 8]. Another way is by trust region methods (see sections 2 and 4 for
details). In [8], the author also made tests to compare the two kinds of parameter selection
methods. It was concluded that both methods could generate comparable results. However,
the author further pointed out that, ‘whether the standard trust region implementations of
the Levenberg–Marquardt iterations are also a regularization remains a very interesting open
problem’. Some concerns about the design of a suitable stopping rule are also included in that
paper. This open problem was first addressed in [4]. We will solve the open problem proposed
in [4, 8]. Particularly, we give a positive answer that the standard trust region methods are
indeed a regularization.

Now, we give a detailed interpretation of the standard trust region method. When
introducing the Gauss–Newton and Levenberg–Marquardt methods, we ignore the second
term of (13). Accordingly, in the trust region method, the second term of (13) is also ignored.
Thus the trust region subproblem (TRS) can be formulated as follows:

min
ξ∈X

ψ̃k(ξ) := (grad(J)k, ξ) + 1
2 (H̃ess(J)kξ, ξ), (14)

s.t. ‖ξ‖ � �k, (15)

where

H̃ess(J)(xk) = F ′(xk)
∗F ′(xk). (16)

The trust region algorithm considered in the paper is based on the minimization process
TRS (14)–(15). A trust region algorithm generates a new point which lies in the trust region,

824 Y Wang and Y Yuan

and then decides whether it accepts a new point or rejects it. At each iteration, the trial step ξk

is normally calculated by solving the ‘trust region subproblem’ (14)–(15). Here �k > 0 is a
trust region radius. Generally, a trust region algorithm uses

rk = Aredk

Predk

(17)

to decide whether the trial step ξk is acceptable and how the next trust region radius is chosen,
where

Predk = ψ̃k(0) − ψ̃k(ξk) (18)

is the predicted reduction in the approximate model, and

Aredk = J (xk) − J (xk + ξk �k

Convergence and regularity of trust region methods 825

The following property has been established in [5, 19]:

Proposition 1.3. If H̃ess(J) + αI is positive definite, then ‖ξ(α)‖ is strictly decreasing as α

increases.

The choice of the trust region method for the solution of problem (1) is motivated by
the characteristics of many application problems, such as the inverse gravimetry problem
(see section 5) and the parameter identification problem (see [15]), i.e., the ill-posedness of
these kinds of problems. The global convergence of trust region methods for well-posed
unconstrained problems is well established, see, e.g., [5, 19]. The purpose of this paper is to
investigate the convergence and regularity of the trust region method for nonlinear ill-posed
problems; meanwhile, the TRS is solved through (14)–(15).

It is worthwhile to note that in [14], the author proposed a constrained least squares
regularization method for solving nonlinear ill-posed problems. This is perhaps the first paper
to combine trust region algorithms with the regularization of ill-posed problems. Instead of
the Tikhonov regularization (4), the author first forms a constrained least squares errors (LSE)
problem

min
x∈X

J (x) := 1
2‖F(x) − yδ‖2,

s.t. c(x) � β2,

where β is the regularization parameter, c(x) is a penalty functional whose purpose is to
stabilize the minimization and provide a priori information about the solution; hence it is
called the ‘regularization constraint’. Then under the six assumptions (A1)–(A6) (see [14])
the author proves the local convergence of the constrained LSE. For the numerical solution of
the constrained LSE, the author first applies a Gauss–Newton approximation to the objective
functional f (x) := ‖F(x) − yδ‖2 and obtains a quadratic approximation to f (x); then
retaining the quadratic regularization constraint and imposing an additional quadratic trust
region constraint, the author employs the singular value decomposition to find the solutions
of the trust region subproblem. Actually, the author only combines trust region algorithms
in the numerical test and does not consider the regularization of the trust region algorithms.
Moreover, the formulation of the trust region subproblem is not classical because of the
imposed regularization constraint.

Let us denote a solution of (1) by x+, ξ+
k = x+ − xk is the difference between the true

solution and the iterate xk , and suppose F is Fréchet differentiable. We recall a widely used
assumption for analysis of the nonlinear ill-posed problems,

Assumption 1.4. For a certain ball B ⊂ D(F) around the exact solution x+ of equation (1)
and some 1 > d > 0, F satisfies the local property

‖F(x) − F(x̂) − F ′(x̂)(x − x̂)‖ � d‖F(x) − F(x̂)‖ (26)

for all x, x̂ ∈ B.

If we replace x by x+, x̂ by xk in (26), then we obtain∥∥y − F(xk) − F ′(xk)ξ
+
k

∥∥ � d‖y − F(xk)‖, 0 < d < 1. (27)

The above condition is strong enough to ensure at least local convergence of the iterates to a
solution x of (1) in B, cf section 2.

Usually, when we deal with a nonlinear problem, we also assume that the Lipschitz
conditions for F ′ are satisfied, i.e.,

‖F ′(u) − F ′(x̂)‖ � d̂‖u − x̂‖.

826 Y Wang and Y Yuan

This yields the usual Fréchet estimate

‖F(x) − F(x̂) − F ′(x̂)(x − x̂)‖ � d̂

2
‖x − x̂‖2. (28)

For ill-posed problems, (28) provides little information about the local behaviour of F around
x, because the left-hand side of (28) can be significantly smaller than the right-hand side even
for an arbitrarily small ‖x − x̂‖. For example, fix x ∈ D(F) and assume that F is continuous
and compact, then F ′(x) is compact. Hence, for every sequence {x̂k} with ‖x̂k − x‖ = ε

(ε is arbitrarily small) for all k ∈ N, the left-hand side of (28) tends to 0 as k → ∞ whereas
the right-hand side remains d̂

2 ε2 for all k. Now it is clear that assumption 1.4 comes from the
remedy of the situation induced by (28). More detailed interpretation and several examples
satisfying it can be found in [2, 7]. In their papers, the constant d is restricted to

(
0, 1

2

)
for the

analysis of the convergence of the nonlinear Landweber iteration. This assumption is helpful
for analysing the properties of the trust region algorithm which is presented in this paper.

The paper is organized as follows: in section 2, we analyse the convergence properties
of the trust region algorithm when applying to ill-posed inverse problems; in section 3, the
regularity of the trust region algorithm is proved; in section 4, the numerical implementation
for discrete problems is discussed; in section 5, we use the trust region algorithm for solving
the inverse gravimetry problem; finally in section 6, some concluding remarks are presented.

2. Convergence properties for exact data

For simplicity, we introduce some notation in the situation when the exact data are given. We
denote

Tk = F ′(xk), gk = −F ′(xk)
∗(y − F(xk))

for the exact data, and

ξk,αk
= −(T ∗

k Tk + αkI)−1gk (29)

as the trial step in each iteration. Then at the kth step, we solve (29) to get the step ξk,αk
.

If ξk,αk
is a solution of equations (22) and (23), then there is a unique αk > 0 that satisfies

(22) and (23). From (29), the parameter αk > 0 satisfies∥∥ξk,αk

∥∥ = �k, (30)

i.e.,

‖(T ∗
k Tk + αkI)−1gk‖ = �k. (31)

Denote the residual (or the discrepancy) y − F(xk) by resk . Note that

Tk(T
∗
k Tk + αkI)−1T ∗

k = TkT
∗
k (TkTT‖‖ T

++

I 3 0

+y

Convergence and regularity of trust region methods 827

Therefore, ∥∥resk − Tkξk,αk

∥∥ = αk‖(TkT
∗
k + αkI)−1 resk‖ � ‖resk‖. (33)

For ill-posed problems, the norm of the discrepancy, i.e., ‖y − F(xk)‖, is widely used to
determine whether the iteration process should be carried out or not ([4, 6]). For the iteration
process of the trust region algorithm for the exact data case, we use the stopping rule as
follows:

If‖y − F(xk)‖ � ε (the tolerance), then the iteration process is terminated.

828 Y Wang and Y Yuan

Combining (36), (37) and (38) yields∥∥ξ+
k

∥∥2 − ∥∥ξk,αk
− ξ+

k

∥∥2
> 2(c1 − d)‖(TkT

∗
k + αkI)−1 resk‖‖resk‖.

This completes the proof. �

The following lemma will indicate that the sequence {αk} generated in each iteration is
uniformly bounded.

Lemma 2.2. Let �k, gk and αk as in algorithm 1.1. Then there exists a constant ω > 0 such
that �k � ω‖gk‖. Moreover, {αk} is uniformly bounded.

Proof. Suppose, in contrast, that the first assertion is not true. Then

lim inf
k→∞

�k

‖gk‖ = 0. (39)

By (21) and (39), there exists a subsequence {ki} such that

�ki+1 < �ki
(40)

and
�ki

‖gki
‖ → 0 as i → ∞. (41)

The limit property in (41) implies that

Predki
= ψki

(0) − ψki

(
ξki

)
� ψki

(0) − ψki

(
− �ki∥∥gki

∥∥gki

)
= �ki

∥∥gki

∥∥ + O
(
�2

ki

)
= �ki

∥∥gki

∥∥(
1 + O

(
�ki∥∥gki

∥∥
))

. (42)

This, together with

Aredki
= Predki

+ O
(
�2

ki

)
, (43)

yields that

rki
= Aredki

Predki

→ 1 as i → ∞. (44)

Therefore

�ki+1 � �ki
(45)

for all sufficiently large i, which contradicts (40). This proves that the first assertion is true.
By the first assertion, ‖gk‖

�k
is bounded. This together with (31) leads to the second assertion,

the boundedness of the sequence {αk}. �

Theorem 2.3. Assume that assumption 1.4 holds. Given the exact data y, the sequence {xk}
generated by the trust region algorithm converges to a solution of F(x) = y as k → ∞.

Proof. By theorem 2.1, xk+1 = xk + ξk,αk
is a better approximation to the exact solution x+

than xk ,

‖xk+1 − x+‖ � ‖xk − x+‖.

Convergence and regularity of trust region methods 829

Thus ‖xk − x+‖, k � 1 is a monotonically decreasing sequence. Next we show the sequence
{xk} converges to a solution of F(x) = y, where we use a similar technique as in [4] and [11].
In particular, we will show the iteration errors ek = x+ − xk, k ∈ N form a Cauchy sequence.

Given k, l ∈ N with k > l, let j ∈ {l, . . . , k} be chosen so that

‖y − F(xj)‖ � ‖y − F(xi)‖, i = l, . . . , k.

Now consider

‖ej − el‖2 = ‖el‖2 − ‖ej‖2 + 2(ej , ej − el), (46)

and denote wk = (TkT
∗
k + αkI) + ∈ k�

830 Y Wang and Y Yuan

Recalling the monotonicity of the iteration error ‖xk − x+‖, the right-hand side approaches
zero as k, l → ∞, and hence {xk} is a Cauchy sequence.

Denote the limit of xk by x. Because

‖resk‖ � ‖TkT
∗
k + αkI‖‖wk‖

= (‖Tk‖2 + αk)‖wk‖,
and αk is uniformly bounded according to lemma 2.2, we have

‖wk‖ � 1

‖Tk‖2 + M
‖resk‖,

where M is the upper bound of αk . This proves that

‖y − F(xk)‖2 � ‖Tk‖2 + M

2(c1 − d)
(‖x+ − xk‖2 − ‖x+ − xk+1‖2). (47)

Recalling that ‖Tk‖ is uniformly bounded, we obtain the convergence of
∑∞

i=0 ‖y − F(xi)‖2

from estimate (47). Therefore F(xk) → y as k → ∞, and x is a solution of F(x) = y. �

3. Regularity for inexact data

We assume that the rhs y is contaminated by noise, i.e., instead of y, we may then have a
perturbed version yδ with an error level δ such that

‖y − yδ‖ � δ.

In this case, the solution of the ill-posed problem would be very sensitive to the small
perturbations in the rhs y.

For algorithm 1.1, the stopping rule we choose is the discrepancy principle (see [4]), i.e.,
the iteration should be terminated at the first occurrence of the index k such that∥∥F

(
xδ

k

) − yδ

∥∥ � τδ, (48)

where τ > 1 is the dominant parameter and can be chosen by users.
Now we consider the regularity of the trust region algorithm in the perturbed case.

Accordingly the corresponding iterates will be denoted by xδ
k . We also assume that k(δ) is the

smallest iteration index k such that the discrepancy inequality∥∥yδ − F
(
xδ

k(δ)

)∥∥ � τδ, τ > 1 (49)

holds.

Theorem 3.1. Assume that assumption 1.4 holds and TkT
∗
k + αkI is positive definite. Let τ in

(49) be chosen such that τ > 1+d
1−d

. Let x+ be a solution of F(x) = y with F satisfying (26)
for some d > 0 in a ball B ⊂ D(F) around x. Then algorithm 1.1 terminates after k(δ) < ∞
iterations. Moreover, for k = 0, 1, . . . , k(δ),

∥∥x+ − xδ
k

∥∥ is monotonically decreasing.

Proof. We will prove that∥∥x+ − xδ
k+1

∥∥ �
∥∥x+ − xδ

k

∥∥ (50)

with x+ a solution of F(x) = y. By assumption 1.4, we can estimate that∥∥yδ − F
(
xδ

k

) − F ′(xδ
k

) (
x+ − xδ

k

)∥∥ � δ +
∥∥F(x+) − F

(
xδ

k

) − F ′(xδ
k

) (
x+ − xδ

k

)∥∥
� δ + d

∥∥y − F
(
xδ

k

)∥∥
� (1 + d)δ + d

∥∥yδ − F
(
xδ

k

)∥∥ .

Convergence and regularity of trust region methods 831

Since
∥∥yδ − F

(
xδ

k

)∥∥ > τδ as k < k(δ), hence

δ <
1

τ

∥∥yδ − F
(
xδ

k

)∥∥
and ∥∥yδ − F

(
xδ

k

) − F ′(xδ
k

) (
x+ − xδ

k

)∥∥ � 1 + d + τd

τ

∥∥yδ − F
(
xδ

k

)∥∥ .

By assumption, 0 < 1+d+τd
τ

< 1, hence (27) is fulfilled with y replaced by yδ and xk by xδ
k .

Consequently theorem 2.1 applies and the monotonicity assertion (50) follows as in the proof
of theorem 2.1.

Next we show that there is only a finite number of iterations. In fact using the same
arguments as in the proof of (47), we have∥∥yδ − F

(
xδ

k

)∥∥2 � L

2(c1 − d)

(∥∥x+ − xδ
k

∥∥2 − ∥∥x+ − xδ
k+1

∥∥2
)

(51)

with L = sup
{∥∥F ′(xδ

k

)∥∥ + M
}

for all k < k(δ). By (50) and taking the sum of (51) for
k = 0, 1, . . . , k(δ) − 1, we obtain

k(δ)τ 2δ2 �
k(δ)−1∑
k=0

∥∥yδ − F
(
xδ

k

)∥∥2 � L

2(c1 − d)
‖x+ − x0‖2 < ∞.

This indicates that k(δ) is a finite number. �

Now, we consider the case xδ
k(δ) as δ → 0, and have the following result.

Theorem 3.2. If k(δ) = k for all δ sufficiently small, then xδ
k → xk for k(δ) = k as δ → 0.

Proof. By continuity, if k(δ) = k for all δ > 0, then xδ
k → xk as δ → 0, where xk is the kth

trust region iterate with the exact right-hand side y. Since k(δ) = k, hence by the discrepancy
principle, F(xk) → y as δ → 0. Hence, xδ

k(δ) converges to the solution xk of F(x) = y. �

With the above preparation, now we can prove that the trust region algorithm with
appropriate conditions is a regularization method.

Theorem 3.3. Assume that F satisfies (26) in some ball B ⊂ D(F) and let yδ, x
δ
k be

defined as before. Then the iterates xδ
k generated by algorithms 1.1 converge to a solution of

equation (1) as k → ∞ and δ → 0.

Proof. From theorem 2.3 we know that iterates xk converge to a solution of F(x) = y.
Combining this fact with theorem 3.2, we find that iterates xδ

k converge to a solution of
F(x) = y for k = k(δ) as k → ∞ and δ → 0.

Now, assume that k(δ) → ∞ as δ → 0, and denote by x+ the limit of the iterates xk . x+ is
a solution of F(x) = y. It suffices to consider subsequences {k(δn)}n which are monotonically
increasing to infinity as n → ∞ and δn → 0. For example, consider k(δm) > k(δn) for m > n.
By the monotonicity of xδ

k (see (50)), we have∥∥x
δm

k(δm) − x+
∥∥ �

∥∥x
δm

k(δn)
− x+

∥∥ �
∥∥x

δm

k(δn)
− xk(δn)

∥∥ +
∥∥xk(δn) − x+

∥∥.

Thus given a sufficiently small number ε > 0 and for some sufficiently large number n, we
have that

∥∥xk(δn) −x+
∥∥ � ε/2 by theorem 2.3. On the other hand, for sufficiently large number

m and fixed n,
∥∥x

δm

k(δn)
−xk(δn)

∥∥ � ε/2 by theorem 3.1. This proves that
∥∥x

δm

k(δm) −x+
∥∥ � ε for

all m sufficiently large, and thereafter x
δm

k(δm) → x+ as m → ∞ and hence xδ
k → x+ as k → ∞

and δ → 0. �

832 Y Wang and Y Yuan

4. Numerical implementation

To solve (9) numerically, the problem has to be discretized. Let Pn denote a projection of X
onto an n-dimensional subspace Xn, and Qm denote a projection of Y onto an m-dimensional
subspace Ym. Hence we can define Fmn the finite approximation to the nonlinear operator F:

Fmn(x) := QmF(Pnx). (52)

Since F is differentiable, each Fmn is differentiable. For the discrete version (52), we consider
the minimal least squares problem in the form

min
x∈Xn

Jn(x) := 1
2‖Fmn(x) − ym‖2. (53)

In this case, at each iteration a trial step is calculated by solving the subproblem

min
ξ∈Xn

ψ̃k(ξ) := (grad(Jn)k, ξ) + 1
2 (H̃ess(Jn)kξ, ξ), (54)

s.t. ‖ξ‖ � �k, (55)

in finite spaces Xn and Ym. Where, grad(Jn)(x) and H̃ess(Jn)(x) can be evaluated respectively
by

grad(Jn)(x) = F ′
mn(x)T (Fmn(x) − ym)

and

H̃ess(Jn)(x) = F ′
mn(x)T F ′

mn(x).

For simplicity, we use the same notation Tk for F ′
mn(xk) and gk for −F ′

mn(xk)
T (ym −

Fmn(xk)). Noted in section 2, the parameter αk can be determined from equation (30) or (31).
For solving the parameter αk , we apply Newton’s method to the nonlinear equation

�k(αk) := 1∥∥ξk,αk

∥∥ − 1

�k

= 0. (56)

The reason for considering (56) instead of the simpler equation∥∥ξk,αk

∥∥ = �k (57)

is that �k(αk) is close to a linear function. Thus Newton’s method would give a faster
convergence. In fact the first-order and second-order derivatives of �(αk) can be easily
computed; hence Newton’s method can be used to calculate αk (see [17, 18] for details). The
iteration formula can be given as

α+ = αk −
∥∥ξk,αk

∥∥3

gT
k

(
T T

k Tk + αkI
)−3

gk

[
1∥∥ξk,αk

∥∥ − 1

�k

]
. (58)

The following algorithm (see [9]) updates αk by Newton’s method applied to (56).

Algorithm 4.1. (Newton’s method for computing αk)

Until ‖α+ − αk‖ � tol do

STEP 1 Factor T T
k Tk + αkI = RT R.

STEP 2 Solve RT Rξk,αk
= −gk .

STEP 3 Solve RT w = ξk,αk
.

STEP 4 Let α+ := αk − (‖ξk,αk
‖

‖w‖
)2(

1 − ‖ξk,αk
‖

‖�k‖
)
.

Convergence and regularity of trust region methods 833

In this algorithm, RT R is the Cholesky factorization of the matrix T T
k Tk + αkI with

R ∈ Rn×n upper triangular. It is necessary to safeguard αk in order to obtain a positive definite
T T

k Tk +αkI and guarantee convergence. This, in practice, can be satisfied by observing the fact
(see [10]) that the function �k(αk) is concave and strictly increasing. Hence if we choose the
initial guess value αk > 0 such that �k(αk) < 0 then at each iteration, the Newton algorithm
generates a monotonically increasing sequence converging to the solution of �k(αk) = 0. The
tol for choosing the final value of αk should be in (0, 1). But for fast convergence, tol should
not be chosen too small. We choose tol = 0.001 in our test of the next section.

We also remark that for αk solved by algorithm 4.1, T T
k Tk + αkI is positive definite at

each iteration. Hence the assumption that T ∗
k Tk + αkI is positive definite in sections 2 and 3

is reasonable.

Remark 4.2. The finite-dimensional problem (53) can also be solved with any
standard nonlinear optimization package, such as those available on NEOS (www-
neos.mcs.anl.gov/neos/). To obtain satisfactory results, we need to use a regularization
technique, such as the regularized Gauss–Newton method (see [1]). This is because the
derivative operator F ′

mn(x) is a compact operator, hence the finite-dimensional problem is
ill-posed. For ill-posed problems, nonlinear optimization methods cannot be used directly due
to the noise and truncation error propagation.

Remark 4.3. Applying trust algorithms to nonlinear ill-posed problems, we actually need
to implement two cycles of iterations: outer loop and inner loop. The outer loop consists of
updating the iterate xk and the trust region radius �k and evaluating the gradient grad(Jn)k
and Hessian H̃ess(Jn)k , the inner loop is seeking a trial step ξk and a regularization parameter
αk by solving the TRS (54)–(55). The main computational cost of the trust region algorithm
is the solution of the TRS. In algorithm 4.1, we perform the Cholesky factorization on a
symmetric matrix, which requires the amount of computation O

(
1
6n3

)
. Solving for ξk,αk

and
w, the amount of computation is O(3n2). So the computational cost in each inner loop
is O

(
1
6n3 + 3n2

)
. Assume that there are kin inner iterations, then the total computational

cost in the inner loop is O
(

1
6kinn

3 + 3kinn
2
)
. Note that for the inner loop, the gradient

grad(Jn)k and Hessian H̃ess(Jn)k are used only once, which are pre-computed in the outer
loop. It requires matrix–matrix computation O(n3) to obtain H̃ess(Jn)k and matrix–vector
computation O(n2) to obtain grad(Jn)k . In theorem 3.1, we have proved that the trust region
algorithm terminates after k(δ) < ∞ iterations. So the total computational cost in the outer
loop is O(k(δ)n3 + k(δ)n2). Therefore, upon convergence, the total computational cost (inner
loop plus outer loop) is O

((
1
6kin + k(δ)

)
n3 + (3kin + k(δ))n2

)
. This computational effort is

acceptable in modern computers.

5. Numerical results

We take a well-known example that appears in inverse gravimetry ([13]), which is in the form
of the nonlinear Fredholm integral equation of the first kind

F(x)(t) =
∫ b

a

k(t, s, x(s)) ds = y(t), t ∈ [e, f], (59)

with the kernel k(t, s, x(s)) = ln (t−s)2+H 2

(t−s)2+(x(s)−H)2 , and y(t) is the measured term. This
numerical example is also considered in [14]. Clearly the kernel k is defined on the set

834 Y Wang and Y Yuan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
plot of the true and the computed solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
plot of the true and the computed solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
plot of the true and the computed solution

(a)

(c)

(b)

Figure 1. Solutions of the inverse gravimetry problem. The solid line represents the true solution,
xtrue; the dashed line the approximate solution, xappr.

 = {[e, f] × [a, b] × R} and k(t, s, x(s)) ∈ C1(). The first derivative F ′(x) : X −→ Y

is given by

[F ′(x)u](t) =
∫ b

a

∂k

∂x
(t, s, x(s))u(s) ds, t ∈ [e, f], (60)

while the kernel ∂k
∂x

(t, s, x(s)) is evaluated by

∂k

∂x
(t, s, x(s)) = 2(H − x(s))

(t − s)2 + (x(s) − H)2
.

To solve (59) numerically, we choose linearly independent basis functions {φj }nj=1 ⊂
X = H 1

0 (a, b) and take approximations x̂(s) = ∑n
j=1 xjφj (s), x = (x1, x2, . . . , xn)

T ∈ Rn

and then reduce it to a finite-dimensional problem. The integral operator F gives rise to an
operator Fmn : Rn −→ Rm,

[Fmn(x)]i =
∫ b

a

k(ti , s, x̂(s)) ds, 1 � i � m. (61)

Similarly the derivative operator F ′(x) yields an m × n matrix:

[F ′
mn(x)]ij =

∫ b

a

∂k

∂x
(ti, s, x̂(s))φj (s) ds, 1 � i � m, 1 � j � n, (62)

Convergence and regularity of trust region methods 835

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000
plot of the parameters alpha

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
plot of the parameters alpha

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000
plot of the parameters alpha

(a) (b)

(c)

Figure 2. Parameters α generated by algorithm 4.1.

where φj (s) are the standard linear basic functions

φj (s) =

s − sj−1

h
, if s ∈ [sj−1, sj],

sj+1 − s

h
, if s ∈ [sj , sj+1],

0, else,

and sj = jh, h = 1
n
, j = 1, 2, . . . , n. Then integral (59) can be computed numerically.

We take [a, b] = [e, f] = [0, 1],H = 0.1 and different m, n to give a discretization.
Our true function is xtrue(s) = 1.3s(1 − s) + 0.2, and it is discretized by evaluating it at the
points si to give the components xi of x. The right-hand side y is generated by integral (59).
To simulate the practical problems, the perturbed right-hand side is chosen by

yδ = ytrue + δ ∗ rand(size(ytrue)) (63)

where rand(·) is the Gaussian white noise having the same dimension as that of ytrue. The
numerical results are shown in figures 1–3.

In section 3, in the process of proving the monotonicity of the iteration error
∥∥x+ − xδ

k

∥∥,
we let τ > 1+d

1−d
. Practically, τ > 1 can be chosen by users. In theory, in order to make the

approximation better, τ should be chosen close to 1 (see [4]). This means d should be close
to 0.

First we choose n = m = 30, τ = 1.4,�0 = 0.001, α0 = 0.01 with a small perturbation
δ = 0.005. It needs 83 outer iterations and 300 inner iterations to generate convergence.

836 Y Wang and Y Yuan

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000
plot of the parameters alpha

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
plot of the parameters alpha

0 2 4 6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

12000
plot of the parameters alpha

(a) (b)

(c)

Figure 3. Last values of parameters α in each iteration.

The discrepancy norm ‖yδ − F(xk=83)‖ is 0.0070 and the relative error level ‖yδ−F(xk=83)‖
‖F(xk=83)‖ is

0.0014. The recorded total CPU time is 1.25 s. The solution is shown in figure 1(a), where,
the solid line represents the true solution, the dashed line represents the approximations. This
interpretation will also be used for the other two graphs in figure 1.

Then we choose n = m = 60, τ = 1.3,�0 = 0.001, α0 = 0.01 but with a perturbation
δ = 0.01. It needs 20 outer iterations and 90 inner iterations to generate convergence. The
discrepancy norm ‖yδ −F(xk=20)‖ is 0.0112 and the relative error level ‖yδ−F(xk=20)‖

‖F(xk=20)‖ is 0.0015.
The recorded CPU time is 1.109 s. The graph of the solution is shown in figure 1(b).

Finally we choose n = m = 100,�0 = 0.001, α0 = 0.01 with a large perturbation
δ = 0.05 and τ = 1.2 to give a computation. It needs 18 outer iterations and 110 inner
iterations to generate convergence. The discrepancy norm ‖yδ − F(xk=18)‖ is 0.0540 and the
relative error level ‖yδ−F(xk=18)‖

‖F(xk=18)‖ is 0.0057. The recorded CPU time is 2.828 s. The graph of
the solution is shown in figure 1(c).

From figure 1, we see that the computed results are satisfactory. The degree of
approximation depends on the mesh-grid density and the noise level δ. It is true that the
discretized problem will be a better approximation to the original problem if the discretization
points are enormous, but it will be more ill-conditioned. Therefore, due to the ill-posedness
of the problem, we cannot expect the computation results to be totally the same.

In our test, we also record the values of αk during each iteration. We find that the values
of αk are increasing in each loop of algorithm 4.1, but in general it is decreasing. This is true
for our algorithms. The phenomena are shown in figures 2 and 3, in which, from (a) to (c),
each of the figures corresponds to the cases of figure 1. In figure 2, all of the values of αk in

Convergence and regularity of trust region methods 837

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
plot of the true and the computed solution

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

12000

14000

16000
plot of the parameters alpha

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000
plot of the parameters alpha

(a)

(c)

(b)

Figure 4. Solutions of the inverse gravimetry problem. (a) The solid line represents the negative
true solution, −xtrue; the dashed line represents the approximate solution, −xappr. (b) Parameters
α generated by algorithm 4.1. (c) Last values of parameters α in each iteration.

each iteration are recorded; in figure 3, only the last values of αk in each iteration are recorded.
These values of αk can suppress the small singular values of F ′

mn(xk) during each iteration;
hence they also serve as the regularization parameters.

In [14], the author chose another true solution to give a numerical simulation. The true
function is based on the linear combination of two Gaussians

xtrue(s) = c1 exp(d1(s − p1)
2) + c2 exp(d2(s − p2)

2) + c3s + c4,

where c1 = −0.1, c2 = −0.075, d1 = −40, d2 = −60, p1 = 0.4, p2 = 0.67, and c3, c4 are
chosen so that x(0) = x(1) = 0. In the tests, the interval [a, b] = [e, f] = [0, 1],H = 0.2
and the mesh grid numbers are 26. We give a plot of the simulation results in figure 4 by our
algorithms for the given parameters �0 = 0.001, α0 = 0.01 with a perturbation δ = 0.005
and τ = 1.01. It needs 24 outer iterations and 135 inner iterations to generate convergence.
The discrepancy norm ‖yδ − F(xk=24)‖ is 0.0042 and the relative error level ‖yδ−F(xk=24)‖

‖F(xk=24)‖ is
0.0040. The recorded CPU time is 0.359 s. The behaviour of the regularization parameters α

is similar to that in the former test. It seems that our algorithms generate comparable results.
We should point out that in both tests, we add another stopping rule, i.e., if Pred � ε

(ε is the tolerance) then the iteration should also be terminated. Here, the tolerance ε is
chosen as 1.0e − 7. However, Pred � ε is never activated. In fact, if we use Pred � ε as the
stopping rule, it will need many iterations. In such case, the reconstruction results are not very
reasonable. Perhaps choosing a smaller ε will work better.

838 Y Wang and Y Yuan

6. Conclusion

We establish the convergence and regularity of the trust region method for nonlinear ill-
posed inverse problems. The results obtained in this paper are based on the choice of
the approximate Hessian H̃ess(x) = F ′(x)T F ′(x) instead of the exact Hessian Hess(x) =
F ′(x)T F ′(x) + F ′′(x)T (F (x) − y). For the latter, we have not gotten such kinds of results so
far. We conjecture that the trust region algorithm with the exact Hessian is also a regularization
algorithm provided that some stronger conditions are imposed. However, it is unreasonable to
use the exact Hessian in practice due to the difficulty in computing the exact Hessian Hess(x)

and the huge expense on it. We can use some other techniques, for instance, in each iteration,
F ′′(xk) is replaced by Bk , where Bk satisfies the quasi-Newton conditions (see [3]), but the
regularity of such an algorithm is not so clear right now.

Acknowledgments

We thank Professor Zuhair Nashed and Professor Qiyu Sun for their suggestion on improving
the paper and fruitful discussion. We also wish to thank the referees for their constructive
comments and kindly pointing out [14], which may be an original reference for using trust
region methods for nonlinear ill-posed inverse problems. The work is partially supported by
SRF for ROCS, SEM and also partially supported by Chinese NSF grant 10231060.

References

[1] Bakushinsky A and Goncharsky A 1994 Ill-posed Problems: Theory and Applications (Dordrecht: Kluwer)
[2] Binder A, Hanke M and Scherzer O 1996 On the Landweber iteration for nonlinear ill-posed problems J. Inverse

Ill-posed Problems 4 381–9
[3] Dennis J E, Gay D M and Welsch R E 1981 An adaptive nonlinear least-squares algorithm ACM Trans. Math.

Softw. 7 369–83
[4] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[5] Fletcher R 1987 Practical Methods of Optimisation 2nd edn (Chichester: Wiley)
[6] Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of The First Kind (Boston,

MA: Pitman)
[7] Hanke M, Neubauer A and Scherzer O 1995 A convergence analysis of Landweber iteration for nonlinear

ill-posed problems Numer. Math. 72 21–37
[8] Hanke M 1997 A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration

problems Inverse Problems 13 79–95
[9] Moré J J and Sorensen D C 1983 Computing a trust region step SIAM J. Sci. Stat. Comput. 4 553–72

[10] Nocedal J and Yuan Y 1998 Combining trust region and line search techniques Advances in Nonlinear
Programming ed Y Yuan (Dordrecht: Kluwer) pp 153–75

[11] Scherzer O 1996 A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear
ill-posed problems Numer. Funct. Anal. Optim. 17 197–214

[12] Sorensen D C 1982 Newton’s method with a model trust region modification SIAM J. Numer. Anal. 19 409–26
[13] Tikhonov A N and Arsenin V Y 1977 Solutions of Ill-Posed Problems (New York: Wiley)
[14] Vogel C R 1990 A constrained least-squares regularization method for nonlinear ill-posed problems SIAM

J. Control Optim. 28 34–49
[15] Wang Y and Yuan Y 2003 A trust region method for solving distributed parameter identification problems

J. Comput. Math. 21 759–72
[16] Xiao T, Yu S and Wang Y 2003 Numerical Methods for Inverse Problems (Beijing: Science Press) (in Chinese)
[17] Yuan Y 1994 Nonlinear programming: trust region algorithms Proc. Chinese SIAM Ann. Meeting ed S T Xiao

and F Wu (Beijing: Tsinghua University Press) pp 83–97
[18] Yuan Y 1998 Matrix computation problems in trust region algorithms for optimization Proc. 5th CSIAM

Ann. Meeting ed Q C Zeng, T Q Li, Z S Xue and Q S Cheng (Beijing: Tsinghua University Press)
pp 52–64

[19] Yuan Y and Sun W 1997 Optimization Theories and Methods (Beijing: Science Press) (in Chinese)

