

Projected Barzilai–Borwein method for large-scale nonnegative image restoration

	Y	Ť	Q	‡	
t	e e	e	e e	e	e e
	<u>_</u> Q	e	-	-	
\$	e e	e		ee	
e		e	e	ee	
e	e	e	e e	ee e	e e
	Q	e	-	_	

e e		e e			e e			e		e	e		e		e		
	e			е								e		e			
e		e e	e_	e e			e		e			e				e	e
	e	e	e	e		e		ę	e	e		e			e e	e	e
q				e			е	e			-		e	e		e	
e e		e e	e	qe	ee	e	e	e	e	e	e						e
		е_			e e		e	qe	e			e	e	e	e	e	e
e e			e () e		e		q							e	-	
e		e		e		e								e	e		
		e		e	e	e e		-	e		e		e	e	e		
	e			e	e	e	e				e .	_					

Keywords:

1. Introduction

e e e е e ee e_ e e e e e e e e eq e e f e $N \times N$ e e e e e e e e e e e e e e e e e () e e e

Y. Wang and S. Ma

 (1)
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e

$$k(x \ y) \star f(x \ y) = h(x \ y) + n(x \ y) := h_{\delta}(x \ y)$$
(.)

$$\int \int_{\mathbb{R}} k(\mathbf{x} - \xi \ \mathbf{y} - \eta) f(\xi \ \eta) \ \xi \ \eta = h_{\delta}(\mathbf{x} \ \mathbf{y}). \tag{(.)}$$

$$\mathcal{K}\mathbf{f} = \mathbf{h} + \mathbf{n} := \mathbf{h}_{\delta} \tag{(.)}$$

$$\Psi(\mathbf{f}) := -\|\mathcal{K}\mathbf{f} - \mathbf{h}_{\delta}\| , \qquad (.4)$$

$$\dots \qquad \mathbf{f} \ge \dots$$

$$\begin{split} \Psi(f) &:= -f^T A f - h_\delta^T \mathcal{K} f \\ \dots & f \ge \end{split} \tag{(.)}$$

$$q(\mathbf{x}) := -\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathrm{T}} \mathbf{x} \tag{(.)}$$

$$g_k = A x_k - b. \tag{()}$$

e e (_) e e e

$$x_{k+} = x_k - \alpha_k g_k \tag{(.)}$$

$$\alpha_{k} = \frac{g_{k}^{T}g_{k}}{g_{k}^{T}Ag_{k}}.$$
 (.)

 $e e e' e e e e e e \alpha_k$

$$\alpha_{k} = \frac{g_{k-}^{T} g_{k-}^{-}}{g_{k-}^{T} A g_{k-}}$$
 (.)

 $\alpha_{k}^{-'} = \frac{g_{k-}^{T} g_{k-}}{g_{k-}^{T} A g_{k-}}$ (.)

e e e e q e eq (_)_e

$$\mathbf{y}_{\mathbf{k}} = \mathbf{A}\mathbf{s}_{\mathbf{k}} \tag{(.)}$$

 $e \ e \ y_k = g_{k+} \ -g_k \ s_k = x_{k+} \ -x_k \quad e \qquad A \qquad \qquad \alpha^- \ I \ (\alpha \quad)$

$$||y_{k-} - \alpha^- Is_{k-}||$$

e

$$\alpha_{k} = \frac{s_{k-}^{T} s_{k-}}{s_{k-}^{T} y_{k-}}.$$
 (.4)

 $e e \alpha I$ $e e e e e A e e \alpha_k e$ e

$$\|\alpha Iy_{k-} - s_{k-}\|$$

$$\alpha_{k} = \frac{s_{k-}^{T} y_{k-}}{y_{k-}^{T} y_{k-}}.$$
 (...)

2. Summary of discrete ill-posedness and regularization for image restoration

		e	;			e	e	e	e			e	;		e		(е		e	e					e	
			e		e	e	e	e					e	-													
	e		e	e e			e	e			e		(_)		e			e				e		e e	e e	e
\mathcal{K}							e		e					e	;	e	\mathbf{h}_{δ}					e		e			
e					h	lδ		e											e		e		e	-		e e	e
			e		е	e				e						e	e	-		e	e	e					
(е	e	e					e	q	ę	0	e		e		eq	e					e					
e			e					e								e		(_)			e					

$$\hat{\mathbf{k}}(\omega_{\mathbf{i}} \ \omega_{\mathbf{j}}) \, \hat{\mathbf{f}}(\omega_{\mathbf{i}} \ \omega_{\mathbf{j}}) = \hat{\mathbf{h}}(\omega_{\mathbf{i}} \ \omega_{\mathbf{j}}) + \hat{\mathbf{n}}(\omega_{\mathbf{i}} \ \omega_{\mathbf{j}}) := \hat{\mathbf{h}}_{\delta}(\omega_{\mathbf{i}} \ \omega_{\mathbf{j}})$$
(.)

$$\hat{f}(\omega_i \ \omega_j) = R(\omega_i \ \omega_j) \hat{h}_{\delta}(\omega_i \ \omega_j). \tag{(.)}$$

e e e e e

$$\mathbf{R}^{eee}(\omega_i \ \omega_j) = \frac{\hat{\mathbf{k}}^*(\omega_i \ \omega_j)}{|\hat{\mathbf{k}}(\omega_i \ \omega_j)| + /\epsilon}$$
(...)

e e e e e e e e e е_ e e e e e e e e

$$R \quad (\omega_i \ \omega_j) = \frac{\hat{k}^*(\omega_i \ \omega_j)}{|\hat{k}(\omega_i \ \omega_j)| + \alpha S(\omega_i \ \omega_j)}$$
(.4)

е e

e eq e e eq e e e e e e e e e

q

e e e e e e e e e e e е__ e e

$$\|\mathcal{K}\mathbf{f} - \mathbf{h}_{\delta}\| + \alpha \Gamma(\mathbf{f}) \tag{(.)}$$

e e (Lf f) e e e e e e e e e e e e e ee e $\Gamma(f)$

e $\Gamma(f) = \int |\nabla f|$ e e ∇f e e f $|\cdot|$ e e (_) α e e e e e e e_e e e e e e e *α* e e e e e eα e e h_& e e e ее е е К e e e e (_) e e e e) e e e q e е e (e e (<u>e</u> ee e e e () e e e e e e qe e e () e) e $ee \alpha$ e e e e e e e e_ e e e e e e e e e e e e e e e O e e Q +e ee α e e e e ee ee α e e e е_ e е e е е е e е e e ee ee e e e et al 🗕 et al _4 et al e e ____

3. Image restoration with nonnegative constraints

e e e e e e e e e $(_)$ e $f \ge _e$ eee e e e e Kf e e e e e e $e e \mathcal{K}f e$ $e e \mathcal{K}f e$ e e e e e e $e e e e e f = e(z) e f_i = e(z_i)$ $e e \Psi e e z$ e $\mathcal{K}e(z) e$ (_4) e e e e e

$$_{z}\Psi(f) = F \qquad _{f}\Psi(f) = F\mathcal{K}^{T}(\mathcal{K}f - h_{\delta}) \tag{(.)}$$

$$f_k = f_{k-} + \alpha_k d_k \tag{(.)}$$

$$\Phi(\mathbf{f}) := - \|\mathcal{K}\mathbf{f} - \mathbf{h}_{\delta}\| + \frac{\alpha}{-} \|\mathbf{f}\|$$

e e e e

$$\begin{split} & - \left\| \mathcal{K} f - h_{\delta} \right\| \\ & \ldots \quad \left\| f \right\| \leq \Delta \\ & f \geq \ . \end{split} \tag{(.)}$$

 $e \, e \, P_\Omega(\cdot)$

Y. Wang and S. Ma

e e e e x_k e e e e e e e

$$\mathbf{x}_{k+} = \mathbf{P}_{\Omega}(\mathbf{x}_k - \alpha_k \mathbf{g}_k)$$

 Remark 1
 e (_)
 e
 e
 (_)
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e

$$\mathcal{M}(\mathbf{f}) := -\mathbf{f}^{T} \mathcal{K}^{T} \mathcal{K} \mathbf{f} - \mathbf{h}_{\delta}^{T} \mathcal{K} \mathbf{f}$$

$$(4.)$$

$$\mathcal{M}(\mathbf{f}_k) - \mathcal{M}(\mathbf{f}_k + \beta \mathbf{d}_k) \ge -\beta\lambda \ \mathbf{d}_k^{\mathrm{T}} \mathbf{g}_k \tag{4.}$$

$$\mathbf{d}_{\mathbf{k}}^{\mathrm{T}} \mathbf{g}(\mathbf{f}_{\mathbf{k}} + \beta \mathbf{d}_{\mathbf{k}}) \ge \lambda \ \mathbf{d}_{\mathbf{k}}^{\mathrm{T}} \mathbf{g}_{\mathbf{k}} \tag{4.}$$

$$\mathcal{M}_{e} = \mathcal{M}(f_{i}) \leq i \leq k.$$
 (4.)

$$\mathcal{M}_{r} - \mathcal{M}(f_{k} + \beta d_{k}) \geq -\beta \gamma \ d_{k}^{T} g_{k}. \tag{4.}$$

e e e L e M $e \quad e \quad e \quad e \quad e \quad \mathcal{M}(f)$ _ ee e e e e eqee e e e e e e e e_O e e e e e e L e e $e \mathcal{M}_r e$ \mathcal{M}_{r} $\mathcal{M}_{c} \stackrel{\text{ee}}{=} e \stackrel{\text{e}}{=} e \stackrel{\text{e}}{=} e \stackrel{\text{e}}{=} \mathcal{M}_{c} \stackrel{\text{e}}{=} \mathcal{M}_{c} \stackrel{\text{f}}{=} \mathcal{M}$ e e e e e e e e e

$$\|\tilde{g}_k\| \leq \varepsilon \|g\| \qquad (4.)$$

eee e e e e $\tilde{\mathbf{g}}_{\mathbf{k}}$ e e

$$(\tilde{g}_k)_i = \begin{cases} (g_k)_i & (f_k)_i > \\ \{(g_k)_i \ \} & (f_k)_i = \ . \end{cases}$$

ee eek ee ee Remark 2 e e e e e e e ee e e e e e e e е е ее є е е e e e e ee e e k e $e \varepsilon =$ e) e e e (e $\varepsilon =$ e (e e e <u>)</u> e e e e e ε e e e e e e e ee e e e e e e _O e e e eε е e e e e e e e e e e e e e e ε e ee e e e e e e e e e e e e e e e e е

Algorithm 1 (______e e e)

5. Remarks on the convergence and regularizing properties

e	x _k e	e eq	le e	e e	e	e e		e	Х		Χ_
e	e	e	e	e		$q(\mathbf{x})$	Xk	$g_k = Ax_k - b$		e	e

 $k \geq$

$$g_{k+} = \frac{1}{\alpha_k} (\alpha_k I - A) g_k. \tag{(.)}$$

$$g_{k+}^{(i)} = \frac{1}{\alpha_k} (\alpha_k - \lambda_i) g_k^{(i)}. \tag{(.)}$$

		e		e		e	e				6	e	e	e			e	e			Α	:=	\mathcal{K}^{T}	\mathcal{K}
			е_		e e	e		e	e			e					e			e)		e	
e	e			e		e	e	e		-					e		e	e						e
(e			e				ę	e	e	e	e	e				e		q	e			-	
		e		e			e e	e e			e					e			e			e		
		e	e_		e	e			e			e				e	e				e		e	-
	e					e	e	e						e		(e							e
e		ec	1			e			e					e		e		-		ee		e		e
					e	e		e	e					e	e									
				e		-																		
		e							e	e	•	e			e						e			e
	e					(Э		e	;		e		e	;	e			-				e	
e								e		e				e		e							e	e
e				e		-		e e	e		e	•		e				e					e	
W	e se	et a	ma	xim	num	itera	atio	n nı	ımb	er k	K	, if	the	e ite	ra	tive	ind	ex	k e	exce	eeds	s k		the
itera	tion	of	Alg	gori	thm	1 sł	ioul	d be	e st	oppe	ed									e		e	ł	ζ.
	e			-	e	e		e					e	9		e			(e e		e		e
	е																							

6. Matrix-vector multiplication

e e e e e () e e e e

$$\mathbf{k}(\mathbf{x} - \boldsymbol{\xi} \ \mathbf{y} - \boldsymbol{\eta}) = \mathbf{k}_{\mathbf{x}}(\mathbf{x} - \boldsymbol{\xi})\mathbf{k}_{\mathbf{y}}(\mathbf{y} - \boldsymbol{\eta}). \tag{(.)}$$

$$\mathcal{K} = \mathcal{K}_{\mathbf{x}} \otimes \mathcal{K}_{\mathbf{y}}.$$
 (.)

$$e (U) = \begin{bmatrix} U & \dots & U_{m_x} & U & \dots & U_{m_x} & \dots & U_{m_y} & \dots & U_{m_x m_y} \end{bmatrix}^T$$

e e e e eq (_4) e e e

$$\begin{split} \Psi(\mathbf{f}) &:= - \left\| (\mathcal{K}_{\mathbf{x}} \otimes \mathcal{K}_{\mathbf{y}}) \ \mathbf{e} \ (\mathbf{f}) - \ \mathbf{e} \ (\mathbf{h}_{\delta}) \right\| \\ & \dots \quad \mathbf{e} \ (\mathbf{f}) \geq \quad . \end{split} \tag{(.)}$$

6.1. MVM: FFT-ba ed e d

				e												e e	
		e		e				()		e	e		e	e	e
				e	e	-	e	e		e							
e	m			e e		e e			e		f	m					
	e			$\mathcal{K}_{\mathbf{x}}$		$\mathcal{K}_{\mathbf{y}}$	e		e		e	e		e	e e	e	e
	e	e		\mathcal{K}	()	5		e				e		(.) .	e	e
	e													()	e	e
e			e e	e					e	e							
	e				e	e		e									

$$\mathcal{K} = \mathcal{F}^{\star} \wedge \mathcal{F}$$

 $ee \mathcal{F} e ee e \Lambda$ $ee e e \mathcal{K} ee e e \mathcal{K} e e e$ $ee e () e \mathcal{K} e e$ $\mathcal{K} \mathcal{F}^* \Lambda \mathcal{F} \mathcal{K}$ e e e e e () e e me() e e

6.2. MVM a e a : a e c a ac

$$\mathbf{k}(\mathbf{x} \ \mathbf{y}) = \frac{1}{\pi\sigma} \mathbf{e} \quad \left(--\left(\frac{\mathbf{x} \ +\mathbf{y}}{\sigma}\right)\right) \tag{.4}$$

 $ee\sigma$ e eee eee $e\sigma$ eef e eeef e eeef

$$A = \begin{pmatrix} a & a & \cdots & \\ a & a & \cdots & \\ \vdots & \vdots & \ddots & a \\ & & a & a \end{pmatrix} \quad B = \begin{pmatrix} b & b & \cdots & \\ b & b & \cdots & \\ \vdots & \vdots & \ddots & b \\ & & & b & b \end{pmatrix}$$

e $C := (C \ C \ C_4)^T = (a b \ a b \ a b \ a b \ a b \)^T$ e e e

$$y = \begin{pmatrix} a Bx \\ \vdots \\ a Bx_{m-} \end{pmatrix} + \begin{pmatrix} a Bx \\ a Bx \\ \vdots \\ a Bx_{m} \end{pmatrix} + \begin{pmatrix} a Bx \\ \vdots \\ a Bx_{m} \end{pmatrix}$$

e e

$$\mathbf{x} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \\ \vdots \\ \mathbf{x}_m \end{pmatrix} \quad \mathbf{x}_i = \begin{pmatrix} \mathbf{x}_i \\ \mathbf{x}_i \\ \vdots \\ \mathbf{x}_{in} \end{pmatrix}.$$

e

a Bx =
$$\begin{pmatrix} C x \\ \vdots \\ C x_{n-} \end{pmatrix} + \begin{pmatrix} C x \\ C x \\ \vdots \\ C x_{n} \end{pmatrix} + \begin{pmatrix} C x \\ \vdots \\ C x_{n} \end{pmatrix}$$

e e e

e

7. Numerical experiments

7.1. *1D I age e a b e*

$$\int_{a}^{b} k(x-y) \, f(y) \ y = h(x) \tag{ . } \label{eq:k}$$

 $\begin{array}{cccc} e & e & k(\mathbf{x}) = & /\sqrt{\pi}\sigma e & \left(- & / & (\mathbf{x}/\sigma) \\ e & & - & , \end{array} \right) \sigma & e & - & e & f \\ \end{array}$

$$f(y) = e (-(y - .)) + e (-(y + .)).$$
 (.)

$$h_i = \sum_{j=}^n \mathcal{K}_{ij} f(y_j). \tag{\ }$$

e e e e e e e e e h

$$\mathbf{h}_{\delta} = \mathbf{h} + \hat{\delta} \cdot (\mathbf{e}(\mathbf{h}))$$

e e e e e e e e ; e e e e_ e e eee_e e e e e e e $e e \delta = .$ e e e e e e e e e e e e_ ee e e e e e e e e e _ e e e e e e e e e e e e e e e eq e e e е e e e e e e * ne e e e ĸ e e e e e e e e e e e e e e e X e \mathcal{K} e Х e e e e e e е_ . e e e e e e e e еее e e e 4

e e e e e e e e e e e e e

$$e := \frac{\| e_e - e_e \|_1}{\| e_e \|_1}$$

e U e (e) e e e е e e e e е_ eε $\varepsilon < . e$ e e e e e ${\mathcal E}$ е e e e e e e ее_ ee e e е е e e e e e e e e e e e e

	е_	e e e e	e e $\delta = $	
e	U e (e)	e e	e e e (e)	ε
	4 	4 4 4	- - 4 - 4	_ e- _ e- _ e- _ e-

e e _ e e e 4 е_ (right) e e e e e e e e e еее e e e e e e e e <u> O</u>e e e e e e e e e е_

7.2. A ecageea

$$\mathbf{k}(\mathbf{x} - \boldsymbol{\xi} \ \mathbf{y} - \boldsymbol{\eta}) = \frac{1}{\pi\rho\bar{\rho}} \mathbf{e} \quad \left(--\left(\frac{\mathbf{x} - \boldsymbol{\xi}}{\rho}\right) - -\left(\frac{\mathbf{y} - \boldsymbol{\eta}}{\bar{\rho}}\right)\right). \tag{.4}$$

$$\mathbf{n} = \delta \cdot \qquad (\mathbf{N} \quad)$$

 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e
 e

Y. Wang and S. Ma

e_eę

e_eeeeee

e e e Left e e = . Right e e = .

e e e е_

e ek e_ e e e e e е e e e e e е e e e e e e e k e e e e e_ O e e e e e e e e e e_

e ee e e e e e e e e q e e e e _ e e e e e e e e e e e e e) e e e e e (e е_ e e e e e e ee e e e e e e e е_

7.3. D c e e

e e eq e e e e e e е_ e e eq e e e e q e е e e e e e e e q e e e e e e ee е_ e e e e e e e e e e e ee e e e _

e e e e e e e e e e e e e e e e e ee e e е e e e е e e e е e e e eq e e e e e e e e e e -

8. Conclusion and future works

			e	e	e	e		e			e	e	e
e			e	_ e	e	e		e	e e		e		
	e	e	e	e e		е							
		e		e			e			e	e	e	e
e			e	e_	e	e e		e e e		e			
e			e			e e	e e	e e e	e e	e	e e	e	e
e e		e e	e	e	e		e	e e	e			e	
e	e			e	ee	e e	e					e e	e
e		-	-										

Acknowledgements

e	e	e	e	e e	e		e e e	e '	e
e		e	e e		e eq	e	e	e	
e e				-	e	e	e		
e	e	e	e	e	e e e e		e	e	e e e
	e				e e			-	

References

- Analysis 8 4 4
- e e Introduction to Inverse Problems in Imaging (e e
- <u>4</u> Y ee ee ee ee e q Ue ee e
- Numerical Functional Analysis Optimization 13 4 4
- e e Practical Methods of Optimization (e e e) e Digital Image Processing (e e e e)
- Linear Algebra and its Applications 316
- e Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion
- e
 Y
 e

 Q
 e e
 e
 q e

 O
 e
 Monthly Notices of Royal Astronomical Society 356
- SIAM Journal of Optimmization 1
- Advanced Signal Processing Algorithms e e e e

- _ SIAM Journal on Numerical ee e e e е eq е e Analysis 7 O e e e e e e e IMA е Journal of Numerical Analysis 13 e e e e е е е e e е e e _ 0 e e e e e e Physica D 60 Y Solutions of Ill-posed Problems (e Y е e) e _ _ e e e Numerical Methods for Y e the Solution of Ill-posed Problems (e) e _ e _ _ _ 4 Templates for the Solution of Linear Systems: Building e е Blocks for Iterative Methods (е e) е e e e Mathematical Programming 77 4 0 e _4 e e e IEEE Transactions On Image Processing 7 e 4 Computational Methods for Inverse Problems (e e) Υ Y__ e Υ__ - e e O e e Science in China A 45 е 4 e Y e Science in China A 46 e -Υ__ еY 4 e Y ееее е International Journal of Remote Sensing 25 4 4 4 e e e e e e e e e e Y (_) Numerical Linear Algebra and Optimization (e e e e Υ. 4 ΥY e e e e Y е e e)
- <u>e Y</u> e e e e Science in China A 48 4
- Y
 Y
 Y
 Y
 Numerical Methods for Inverse Problems (e

 e
 e
 e
 e
 e

 Y
 Y
 Numerical Methods for Nonliear Programming (
 e
 e
- e)