

38 (2007) 885, 901

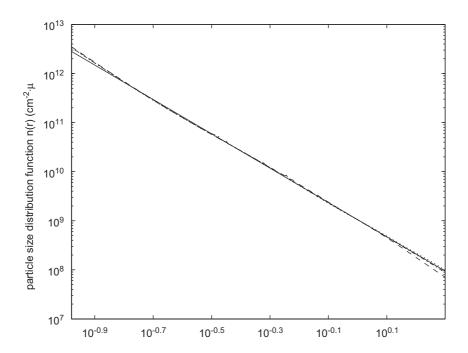
Journal of Aerosol Science

a priori
., , , , , , , , , , , , , , , , , , ,
Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, PR China State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, PR China Department of Mathematics, Liaocheng University, Shandong 252059, PR China School of Geography, Beijing Normal University, Beijing 100875, PR China
Abstract
fi
<i>PACS</i> : 02.30. ; 42.68. I_r ; 42.68. ; 92.60. ; 92.60. ; 02.60.
Keywords: ;, , , ;, $A priori; l^1 , l^2 $; ; ,
1. Introduction
$\overline{\mathbf{M}}$, 1976; , 1977). , $n(r)$, fi
* , , , , 9825, , 100029,

fi , ,	· · · •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,
· · · · · · · · · · · · · · · · · · ·	
400	(1)
r , ; $n(r)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\mathbf{M}}$
n(r),,,,,,,, .	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3. Problem formulation
. ,
3.1. Operator equations of the first kind
fi (, & , 1989; & , 1996; , , 1975; & & , , 2000; , , 2007)
$\int_{a}^{b} k(x, y)n(y) \cdot y = o(x), \tag{2}$
$[a,b] \qquad , \qquad , \qquad , o(x) \\ \dots \qquad , \qquad , x = -r k(x,y) \qquad , \qquad (\qquad , \qquad , \qquad) $ $\text{fi} \qquad , \qquad , \qquad \dots \qquad \text{H} \qquad , \qquad (2) \qquad \qquad o(x) \qquad \dots$
$\int_{a}^{b} k(x, y)n(y) \cdot y + \varrho(x) = o(x) + \varrho(x) = d(x),$ (3)
$\varrho(x) \qquad \qquad$
$K: F \longrightarrow O,$ $(Kn)(\lambda) + \varrho(\lambda) = d(\lambda),$ (4)
$(Kn)(\lambda) := \int_0^\infty k(r,\lambda,\eta)n(r) \cdot r; \ k(r,\lambda,\eta) = \pi r^2 Q (r,\lambda,\eta); F $ $\tau (\lambda) (1) H (d(\lambda) -1) H (d(\lambda) -1) -1$
$Kn + \varrho = d. ag{5}$
3.2. Discrete formulation in finite spaces
(4) fi fi $n(r)$ (7) $n(r)$ (8) $r = \{a, b\}$ (9) $\mathcal{K} = (\mathcal{K}_{ij})_{M \times N}, \vec{n}, \vec{\varrho}$ (9) \vec{d} (1) \vec{d} (1) \vec{d} (2) \vec{d} (3) \vec{d} (4) \vec{n} (6) \vec{r} (7) \vec{r} (7) \vec{r} (8) \vec{r} (8) \vec{r} (9) \vec{r} (9) \vec{r} (1) \vec{r} (1) \vec{r} (2) \vec{r} (3) \vec{r} (4) \vec{r} (5) \vec{r} (7) \vec{r} (7) \vec{r} (7) \vec{r} (8) \vec{r} (9) \vec{r} (9) \vec{r} (1) \vec{r} (1) \vec{r} (1) \vec{r} (2) \vec{r} (3) \vec{r} (3) \vec{r} (4) \vec{r} (5) \vec{r} (7) \vec{r} (7) \vec{r} (8) \vec{r} (9) \vec{r} (9) \vec{r} (1) \vec{r} (1) \vec{r} (1) \vec{r} (2) \vec{r} (3) \vec{r} (3) \vec{r} (4) \vec{r} (5) \vec{r} (7) \vec{r} (7) \vec{r} (8) \vec{r} (9) \vec{r} (9) \vec{r} (9) \vec{r} (9) \vec{r} (1) \vec{r} (1) \vec{r} (1) \vec{r} (1) \vec{r} (2) \vec{r} (3) \vec{r} (3) \vec{r} (4) \vec{r} (4) \vec{r} (5) \vec{r} (7) \vec{r} (7) \vec{r} (8) \vec{r} (8) \vec{r} (9) r
$\mathcal{K}\vec{n} + \vec{\varrho} = \vec{d}.\tag{6}$

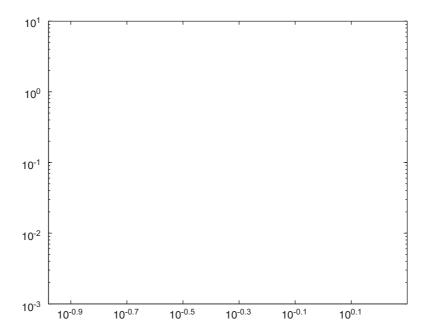
4. Theoretical development

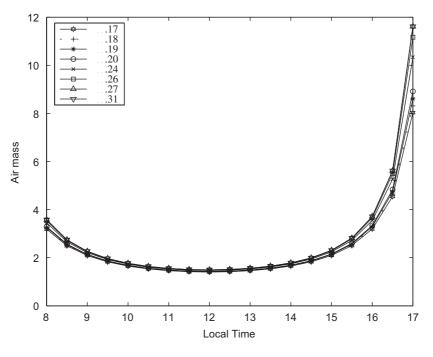

4.1. Solving for an efficient a priori information in l^1 space	
,, fi, fi,	
. H .,	, fi
en e	
l^1,\ldots,l^1,\ldots	••• • • • • • • • • • • • • • • • • •
$\ ec{n} \ _{l^1}$ $\mathscr{K} ec{n} = ec{d}, \ \ ec{n} \geqslant 0.$	(7)
,	
$\mathscr{K} \vec{n} = \vec{d}, \ \vec{n} \geqslant 0,$	(8)
$e \qquad 1. \qquad (8)$ $l^{1} \qquad (8)$	(7).
$S = \{ \vec{n} : \mathcal{K} \vec{n} = \vec{d}, \vec{n} \geqslant 0 \}.$	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
\vec{d} \vec{z} $s = e - \mathcal{K}$ $\vec{z} \geqslant 0$.	(9)
(\vec{n},\vec{z},s)	
$\mathscr{K}ec{n}=ec{d},$	(10)
$\mathscr{K} \vec{z} + s = e,$	(11)
$\tilde{S}\tilde{F}e=0,$	(12)
$\vec{n}\geqslant 0, s\geqslant 0,$	(13)
$\tilde{S} = (s_1, s_2, \dots, s_N), \tilde{F} = (n_1, n_2, \dots, n_N).$	
$\{\vec{n}_k, \vec{z}_k, s_k\} \qquad \vec{n}_k > 0$ $\{\vec{n}_k, \vec{z}_k, s_k\} \qquad \ \vec{d} - \mathcal{K}\vec{n}_k\ \qquad \ \mathcal{K} \vec{z}_k + s_k\}$, · · •
(10) (12), $[\vec{n}_k, \vec{7}_k, s_k]$	$\beta_i \in [0, 1]$

 $\begin{bmatrix} \mathcal{K} & 0 & 0 \\ 0 & \mathcal{K} & I \\ \tilde{S}_k & 0 & \tilde{F}_k \end{bmatrix} \begin{bmatrix} \Delta_{\vec{n}} \\ \Delta_{\vec{z}} \\ \Delta_s \end{bmatrix} = \begin{bmatrix} \vec{d} - \mathcal{K} \vec{n}_k \\ e - \mathcal{K} \vec{z}_k - s_k \\ \beta_k \mu_k e - \tilde{S}_k \tilde{F}_k e \end{bmatrix},$ (14) $\beta_k = (1/N)\vec{n}_k s_k. \qquad \tau_k \ldots \qquad \tau_k \ldots \qquad \vec{n} \ldots s_k, \ldots \ldots$ $\vec{n}_{k+1} := \vec{n}_k + \tau_k \Delta_{\vec{n}}, \quad \vec{z}_{k+1} := \vec{z}_k + \tau_k \Delta_{\vec{z}}, \quad s_{k+1} := s_k + \tau_k \Delta_s.$ (15)4.2. Damped Gauss-Newton method $R(\vec{n}) = \mathcal{K}\vec{n} - \vec{d}$. $J[\vec{n}] = ||R(\vec{n})||_{12}^{2}$. (16) $g(\vec{n}) = \mathcal{K} (\mathcal{K}\vec{n} - \vec{d}), \quad H = \mathcal{K} \mathcal{K}.$ (17) $s_k = \vec{n}_{k+1} - \vec{n}_k$ $\frac{1}{2} \| R(\vec{n}_k) + R'(\vec{n}_k) s \|^2$, (18) $s_k = -R'(\vec{n}_k)$ $g_k = -H^{-1}g_k$ (19) $\vec{n}_{k+1} = \vec{n}_k + s_k,$ (20) $g_k = g(\vec{n}_k)$. $s_k = -\gamma_k H^{-1} g_k,$ (21) $\gamma_k = \int_{\gamma_k} \phi(\gamma) := J[\vec{n}_k + \gamma s_k].$ (22)4.3. Regularization by incorporating an efficient a priori information $s_k = -\gamma_k (H + \alpha_k L)^{-1} g_k$ (23) $s_k = -\gamma_k (H + \alpha_k L)^{-1} (g_k + \alpha_k (\vec{n}_k - \vec{n}_0)),$ (24)(1994).

4.4. Aerosol particle size distribution function retrieval

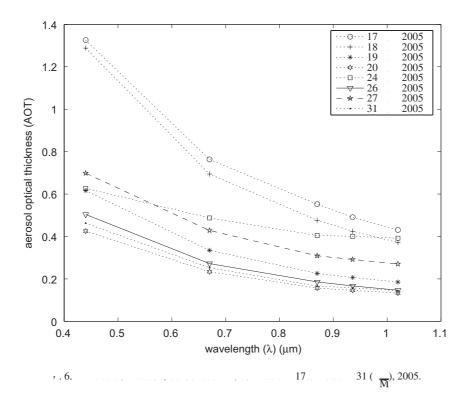
	n(r), (24)	
	· · · · · · · · · · · · · · · · · · ·	
or a Constraint of the Constra		
$\tau (\lambda) = \int_a^b [k(r, \lambda, \eta)h(r)] f(r) \lambda r,$	(25)	
$k(r, \lambda, \eta) = \pi r^2 Q$ (r, λ, η) $k(r, \lambda, \eta)h(r)$		
$(\Xi f)(r) = \tau (\lambda).$	(26)	
	$, \alpha \qquad \qquad \vdots \qquad a \ priori$ $, \alpha \qquad \qquad (0, 1).$ $, a \ posteriori$	
$\alpha_k = \alpha_0 \cdot \xi^{k-1},$	(27)	
	$\alpha_0 = 0.1; \xi \in (0, 1) $	
$\left[1 + \frac{1}{h_r^2} -\frac{1}{h_r^2} 0 \cdots 0 \right]$		
$-\frac{1}{h^2}$ $1 + \frac{2}{h^2}$ $-\frac{1}{h^2}$ 0		
$L = \begin{bmatrix} \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix}$, (28)	
$0 \cdots -\frac{1}{h^2} 1 + \frac{2}{h^2} -\frac{1}{h^2}$		
$\begin{bmatrix} 0 & \cdots & 0 & -\frac{1}{h_r^2} & 1 + \frac{1}{h_r^2} \end{bmatrix}$		
h_r , and h_r , h_r	$h_r = (b-a)/(N-1), \dots, h_r = h_r$ $h_r = (b-a)/(N-1), \dots, h_r = h_r$	
	. (24),	
5. Numerical experiments		

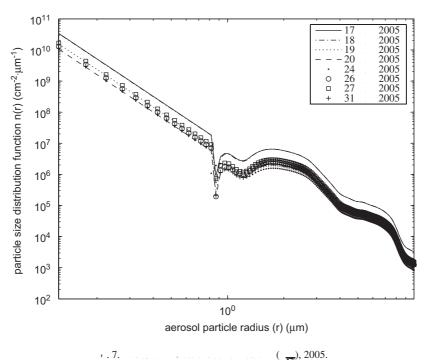

5.1. Theoretical simulation


	$\eta = 1.45 - 0.00i$	$\eta = 1.45 - 0.03i$	$\eta = 1.50 - 0.02i$
$\delta = 0.005$ $\delta = 0.01$	$1.6443 \times 10^{-4} \\ 1.6493 \times 10^{-4}$	$1.2587 \times 10^{-4} $ 1.2720×10^{-4}	2.2773×10^{-4} 2.2847×10^{-4}
$\delta = 0.05$	1.6996×10^{-4}	1.3938×10^{-4}	2.3504×10^{-4}

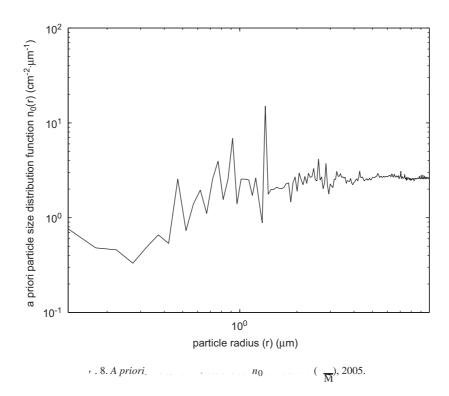
... 2

	$\eta = 1.45 - 0.00i$	$\eta = 1.45 - 0.03i$	$\eta = 1.50 - 0.02i$
$\delta = 0.005$	17	13	16
$\delta = 0.01$	17	13	16
$\delta = 0.05$	17	13	16


318



31, 2005.


17...

17, 20, 24, 26, 27 $[0.1, 10] \mu$ 24 30, λ , λ 16:00 17:00. 17, 20, 24, 26, 27 ... 31. $\eta = 1.50 - 0.095i$.,... <u>H</u>.,.,.-H. (1994), .,.,., J (1963), H = (1980). $\alpha_0 = (1980)$. r ,

n(r)

Acknowledgments

Acknowledgments	
\mathbf{H}	
Appendix A. Conception of regularization	
	and the second of the second of the second
Kn = o,	(.1)
K = K = K = K = K = K = K = K = K = K =	
$ \Pi^{\alpha}: O \to F, \alpha > 0, $	(.2)
$\Pi^{\alpha}Kn=n , n\in F,$	(.3)
$\Pi^{\alpha}K = \Pi^{\alpha}K = \Pi$	
$\Pi^{\alpha} = (K^*K + \alpha L)^{-1}K^*,$	(.4)
$L_{\alpha} = \{ 1, \ldots, n-1 \}, K^* = \{ 1, \ldots, n-1 \}, K^* = \{ 1, \ldots, n-1 \}, K, \alpha \in (0, 1).$	
Appendix B. Conception of a priori information	
$\frac{1}{2} Kn - o ^2 + \frac{1}{2}\alpha L^{1/2}n ^2$	(.1)
$n^{\alpha} = \Pi^{\alpha}o.$	(.2)
$\{\frac{1}{2}\ Kn - o\ ^2 + \alpha\Omega(n - n_0) : n \in F\},\$	(.3)
n_0 , $\alpha > 0$	Ω , Ω

Appendix C. Computing an a priori by searching for an interior point solution

a priori \ldots l^1 \ldots l^1 \ldots l^2 l^2 \ldots l^2 l^2

$$\mathcal{L} c \vec{n} \qquad \mathcal{K} \vec{n} = \vec{d}, \ \vec{n} \geqslant 0, \tag{1}$$

$$\vec{d} \ \vec{z} \qquad \mathcal{K} \ \vec{z} + s = c, \ s \geqslant 0. \tag{2}$$

$$c \vec{n} - \mu \sum_{j=1}^{N} (n_j) \qquad \mathcal{K} \vec{n} = \vec{d}, \ \vec{n} \geqslant 0.$$
 (3)

. fi

$$\lim_{n \to 0} -\mu_{n,j} \cdot (n_j) = \infty. \tag{.4}$$

 $\vec{n} > 0$. . . , $\vec{n} > 0$. figure $\vec{n} > 0$.

$$L(\vec{n}, \vec{z}) = c \ \vec{n} - \mu \sum_{j=1}^{N} (n_j) - \vec{z} \ (\mathcal{K}\vec{n} - \vec{d}).$$
 (5)

,

$$\frac{\partial L}{\partial n_j} = c_j - \mu n_j^{-1} - \mathcal{K}_{:j} \vec{z}, \quad \frac{\partial L}{\partial \vec{z}_i} = \vec{d}_i - \mathcal{K}_{i:} \vec{n}, \tag{6}$$

$$r_{i} = r_{i} L(\vec{n}, \vec{z}) = c - \mu D^{-1} e - \mathcal{K} \vec{z}, \quad r_{i} = \vec{z} L(\vec{n}, \vec{z}) = \vec{d} - \mathcal{K} \vec{n},$$
 (37)

$$D = \begin{bmatrix} n_1 & 0 & \cdots & 0 \\ 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_N \end{bmatrix}. \tag{8}$$

$$\mathcal{K} \vec{z} = c - \mu D^{-1} e, \quad \mathcal{K} \vec{n} = \vec{d}, \quad \vec{n} > 0. \tag{9}$$

find $s = \mu D^{-1}e$,

$$\mathcal{K} \vec{z} + s = c, \quad \mathcal{K} \vec{n} = \vec{d}, \quad Ds = \mu e, \quad \vec{n} > 0.$$
 (10)

 $(\vec{n}, \vec{z}, s) \qquad , \quad , \vec{n} \in S_p = \{\vec{n} : \mathcal{K} \vec{n} = \vec{d}, \vec{n} > 0\}$ $. , (\vec{z}, s) \in S_D = \{(\vec{z}, s) : \mathcal{K} \vec{z} + s = c, s = \mu D^{-1} e > 0\}.$

 $c \vec{n} - \vec{d} \vec{z} = \vec{n} \quad s = \mu N,$

$$F(\vec{n}, \vec{z}, s) = \begin{bmatrix} \mathcal{K}\vec{n} - \vec{d} \\ \mathcal{K} \vec{z} + s - c \\ Ds - \beta \mu e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \tag{.11}$$

 $F(\vec{n}, \vec{z}, s) = 0$

$$F(\vec{n}_k, \vec{z}_k, s_k) \begin{bmatrix} d_{\vec{n}} \\ d_{\vec{z}} \\ d_s \end{bmatrix} = -F(\vec{n}_k, \vec{z}_k, s_k). \tag{.12}$$

$$F(\vec{n}_k, \vec{z}_k, s_k) = \begin{bmatrix} \mathcal{K} & 0 & 0 \\ 0 & \mathcal{K} & I \\ S_k & 0 & D_k \end{bmatrix}, \tag{.13}$$

$$\begin{bmatrix} \mathcal{K} & 0 & 0 \\ 0 & \mathcal{K} & I \\ S_k & 0 & D_k \end{bmatrix} \begin{bmatrix} d_{\vec{n}} \\ d_{\vec{z}} \\ d_s \end{bmatrix} = \begin{bmatrix} \vec{d} - \mathcal{K} \vec{n}_k \\ c - \mathcal{K} \vec{z}_k - s_k \\ -D_k s_k + \beta \mu_k e \end{bmatrix}. \tag{14}$$

Algorithm (Computing an interior point solution).

(1)
$$\vec{n}_1, \vec{z}_1, \vec{s}_1$$
 $\vec{n}_1, \vec{z}_1 > 0, \dots, \vec{s}_n, \vec{\varepsilon}_n, \vec{\varepsilon}_n, \vec{\varepsilon}_n, \vec{\varepsilon}_n, \vec{\varepsilon}_n > 0;$

(2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ∞ ;

$$r_{\vec{n}}^{k} = \vec{d} - \mathcal{K}\vec{n}_{k},$$

$$r_{\vec{z}}^{k} = c - \mathcal{K} \vec{z}_{k} - s_{k},$$

$$\mu_k = \frac{1}{N} \vec{n}_k s_k;$$

(5)
$$\beta \in (0,1)$$
 (.14);

(6)

$$\tau = \tau \cdot \qquad \tau \ge 0 \left\{ \begin{bmatrix} \vec{n}_k \\ s_k \end{bmatrix} + \tau \begin{bmatrix} d_{\vec{n}} \\ d_s \end{bmatrix} \ge 0 \right\}; \tag{.15}$$

(7) $\theta \in (0, 1),$

$$\tau := \{\theta\tau , 1\};$$

(8)

$$\vec{n}_{k+1} := \vec{n}_k + \tau d_{\vec{n}},$$

$$\vec{z}_{k+1} := \vec{z}_k + \tau d_{\vec{\tau}},$$

$$s_{k+1} := s_k + \tau d_s.$$

900 Y. Wang et al. / Aerosol Science 38 (2007) 885-901 **Example** (Computing an interior point solution). $-1n_1 - 2n_2$ $n_1 + n_2 = 1$, $n_1, n_2 \ge 0$. (.16) $\vec{n} = [n_1 \ n_2], c = [-1 \ -2], \mathcal{K} = [1 \ 1], \vec{d} = 1, \dots, \dots, \dots$ $F(\vec{n}, \vec{z}, s) = \begin{bmatrix} \mathcal{K}\vec{n} - \vec{d} \\ \mathcal{K} \vec{z} + s - c \\ Ds - \beta ue \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$ (.17) $\vec{z} = [z_1 \ z_2]$, $s = [s_1 \ s_2]$, $D = (n_1, n_2)$, $\mu = \frac{1}{2}\vec{n}$ $s, e = [1 \ 1]$, $\beta = 0.1$. $F(\vec{n}_k, \vec{z}_k, s_k) = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ s_1 & 0 & 0 & \vec{n}_1 & 0 \\ 0 & s_1 & 0 & 0 & \vec{s}_1 \end{vmatrix}.$ $\vec{n}^* = [0.0000 \ 1.0000]$, $\vec{n}^* = [0.000]$ $\vec{n}^* = 1.0042e - 007,$ $\vec{n}^* = -2.0000.$ Appendix D. Damped Gauss-Newton method with line search $J[\vec{n}] := \frac{1}{2} ||R(\vec{n})||^2.$ (.1) $\frac{1}{2} \|R(\vec{n}_k) + R'(\vec{n}_k)s\|^2$ (.2) $s_k = -H^{-1}g_k$, $\vec{n}_{k+1} = \vec{n}_k + s_k$. (..., & ..., 1999), ..., fi ..., γ_k ..., γ_k ..., γ_k ..., γ_k ..., γ_k $s_k = -\gamma_k H^{-1} g_k.$ (.3) I, J, \ldots, I ..., ..., γ_k ..., γ_k ..., γ_k ..., γ_k ..., γ_k ..., γ_k : $J(\vec{n}_k + \gamma_k s_k) \leq J(\vec{n}_k) + c_1 \gamma_k g_k s_k$ (.4) $c_1 \in (0, 1)$, . , γ_k $g(\vec{n}_k + \gamma_k s_k) \quad s_k \geqslant c_2 g_k s_k,$ (.5)

 $c_1 = 0.1$, $c_2 = 0.4$.

 $c_1, \ldots, c_n, c_n \in (c_1, 1), \ldots, c_1, \ldots, c_n$ (4).

References

° , , (1929).	. Geografiska Annaler, 11, 156 166.
, ., & , . (1994). Ill-posed problems: Theor	
. Applied Optics, 40, 1329 1342.	
,, & H (1983). Absorption and scattering of	light by small particles.
. (1970).	. Journal of Aerosol Science, 27, 960 967.
, ^M . (1974)	Journal of Aerosol Science, 27, 960 967. l of Aerosol Science, 5, 293 300.
	.,
Optics, 34, 5829, 5839.	
H , J. (1994).	. Aerosol Science and Technology, 21, 46, 48.
J., (1963). Air chemistry and radioactivity.	en e
, M ., ., ., H ., ., ., & , , J (1978) Journal of Aerosol Science, 35, 2153 2167.).
, ., & , J. (1995). Vegetation optical remote sensing model an	d vegetation structural parameterization.
, , , & , , J. (1994).	. The Astrophysical Journal, 425,
653 667.	
\overline{M} , J. (1976). Optics of atmosphere.	
M_{i} , ., & (1989).	Abstracts of the American
association for aerosol research annual meeting (. 330).	, ,
, J., & , . J. (1999). Numerical optimization.	1,
	fi
Machinery,	