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The determination of the aerosol particle size distribution function by using the particle spectrum extinction
equation is an ill-posed integral equation of the first kind [S. Twomey, J. Comput. Phys. 18, 188 (1975); Y. F.
Wang, Computational Methods for Inverse Problems and Their Applications (Higher Education Press, 2007)],
since we are often faced with limited or insufficient observations in remote sensing and the observations are
contaminated. To overcome the ill-posed nature of the problem, regularization techniques were developed.
However, most of the literature focuses on the application of Phillips–Twomey regularization and its variants,
which are unstable in several cases. As is known, the particle size distribution is always nonnegative, and we
are often faced with incomplete data. Therefore, we study the active set method and propose a regularizing
active set algorithm for ill-posed particle size distribution function retrieval and for enforcing nonnegativity in
computation. Our numerical tests are based on synthetic data for theoretical simulations and the field data
obtained with a CE 318 Sun photometer for the Po Yang lake region of Jiang Xi Province, China, and are per-
formed to show the efficiency and feasibility of the proposed algorithms. © 2008 Optical Society of America

OCIS codes: 010.1100, 010.1110, 280.1100, 100.0100, 100.3190, 000.4430.
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. INTRODUCTION
tmospheric aerosols are suspensions of small solid or liq-
id particles in the atmosphere, which play an important
ole in atmospheric and environmental research since
hey take part in many physical and chemical processes
n the atmosphere (see [1–5]). It is well known that char-
cteristics of the aerosol particle size, which can be repre-
ented as a size distribution function, say n�r�, in the
athematical formalism, play an important role in affect-

ng climate. Thus it is necessary to determine the size dis-
ribution function of the aerosol particles. Since the rela-
ionship between the size of atmospheric aerosol particles
nd the wavelength dependence of the extinction coeffi-
ient was first suggested by Ångström in 1929, the size
istribution began to be retrieved by extinction measure-
ents. First, Ångström inferred that the parameters of a

unge size distribution could be obtained from the aerosol
ptical thickness (AOT) at multiple wavelengths, and he
btained the useful Ångström empirical formula of Junge
ize distribution, �aero���=��−�, where �aero is the mea-
ured AOT, � is the turbidity coefficient, and � is the Ång-
tröm exponent reflecting the aerosol size distribution
see [6]).

The attenuation of the aerosols can be written as inte-
ral equations of the first kind,

�aero��� =�
0

�

�r2Qex�r,�,��n�r�dr + ����, �1�

here r is the particle radius, n�r� is the columnar aerosol
ize distribution (i.e., the number of particles per unit
rea per unit radius interval in a vertical column through
1084-7529/08/020348-9/$15.00 © 2
he atmosphere), � is the complex refractive index of the
erosol particles, � is the wavelength, ���� is the error or
oise, and Qex�r ,� ,�� is the extinction efficiency factor

rom Mie theory. Since the AOT can be obtained from
easurements of the solar flux density with Sun photom-

ters, one can retrieve the size distribution by the inver-
ion of AOT measurements through the above equations.
his type of method is called extinction spectrometry,
hich is not only the earliest method applying remote

ensing to determine atmospheric aerosol size character-
stics, but also the most mature method thus far (see
7,8]).

To overcome oscillations in recovering the particle size
istribution function n�r�, various techniques have been
eveloped, such as direct regularization methods (e.g.,
9–14]), various iterative methods (e.g., [15–24]), moment

ethods (e.g., [25,26]), statistical methods (e.g., [27,28])
nd computed tomography (e.g., [29]). However, these
ethods do not consider the constraint of nonnegativity of

erosol particle size distributions and may lead to physi-
ally meaningless zero and negative solutions. This paper
ill address this problem. In addition, the commercial
un photometer CE 318 can only supply four aerosol
hannels; i.e., only four observations are obtained, a num-
er insufficient for the retrieval of the particle size distri-
ution function n�r� by solving Eq. (1). Therefore, a nu-
erical difficulty occurs. To overcome the numerical

ifficulty while keeping the solution nonnegative, we first
evelop a constrained regularizing quadratic model and
hen propose an active set method for solving the aerosol
article size distribution retrieval problem.
The paper is organized as follows: Section 2 provides
008 Optical Society of America
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he background for the problem’s formulation in infinite
pace and solution methods. Subsection 2.A formulates
he mathematical model as an operator equation of the
rst kind; Subsection 2.B briefly reviews Phillips–
womey constrained optimization method and Tikhonov’s
egularization method. In Section 3, we formulate our
odel by introducing positive constraints. In Subsection

.A, we propose a regularizing active set method. Subsec-
ions 3.B and 3.C present the numerical implementation
etails. In Section 4, we first perform theoretical simula-
ions to demonstrate the validity and feasibility of the
roposed method; then we use the ground-based remotely
ensed measurements to verify the numerical results
ith our new methods. In Section 5, some concluding re-
arks are given. Finally, we provide two appendices to

tate the fundamentals for the constrained quadratic pro-
ramming problem and to give a realistic algorithm for
olving the problem.

Throughout the paper, we use the following notation:
ª” denotes “defined as;” K denotes an operator, and K de-
otes a discrete operator (i.e., matrix form) in finite di-
ensional space; “n� ” denotes the discretization of a con-

inuous function n; “argmax” and “argmin” denote
maximization for an argument” and “minimization for an
rgument,” respectively; “max” and “min” denote “maxi-
izing” and “minimizing” some functional, respectively; “
*” and “AT” denote the adjoint and the transpose of ma-

rix A, respectively, and “s.t.” denotes “subject to.”

. ILL-POSED NATURE OF MODEL
NVERSION AND REGULARIZATION

common feature for all particle size distribution mea-
urement systems is that the relation between noiseless
bservations and the size distribution function can be ex-
ressed as a first-kind Fredholm integral equation (e.g.,
16,23,30]). For the aerosol attenuation problem (1), let us
ewrite Eq. (1) in the form of the abstract operator equa-
ion

K:F → O,

�Kn���� + ���� =�
0

�

k�r,�,��n�r�dr + ���� = o��� + ����

= d���, �2�

here k�r ,� ,��=�r2Qex�r ,� ,��; F denotes the function
pace of aerosol size distributions, and O denotes the ob-
ervation space. Both F and O are considered to be sepa-
able Hilbert spaces. Note that �aero in Eq. (1) is the mea-
ured term; it inevitably induces noise or errors. Hence,
he right-hand side of Eq. (2), d���, is actually perturbed.
eep in mind that the operation of Eq. (2) can be written
s

Kn + � = o + � = d. �3�

. Ill-Posedness
ll-posedness is a basic problem for inverse problems in
arious applications (see, e.g., [16,31–34]). For the aerosol
article size distribution function retrieval problem, the
ll-posed nature arises because (1) the model operator is
ompact, and hence the inverse of small singular values of
he operator leads to unexpected huge values; (2) the ob-
ervations contain noise; and (3) the number of observa-
ions is insufficient. These ill-posed characteristics pro-
uce a kind of jump in the solution space; i.e., instead of
eing centered around the true solution, the results may
pread over the whole parameter space.

. Regularization
egularization is a necessary way to tackle the ill-posed
ature of the inversion process.
Both Phillips–Twomey regularization (see [9,10]) and

ikhonov regularization (see [31]) belong to standard
mooth regularization methods. The general form is given
y

min
1

2
�Kn − d�2 + �	�n�, �4�

here 	�n� is the Tikhonov stabilizer that assigns the
moothness of the function n; �
0 is the regularization
arameter balancing the ill-posedness and smoothness.
n Phillips–Twomey regularization, 	�n� is chosen as a
uadratic form 	�n�= �Dn ,n�, where D is a preassigned
cale operator and is usually chosen as the sums of
quares of the second differences. In standard Tikhonov
egularization, 	�n� is chosen as a Sobolev norm function
f the form 	�n�= �n�W1,2

2 (see [12] for details).
With the regularization model, developing suitable so-

ution methods is very important.

. THEORETICAL DEVELOPMENT
. Regularizing Active Set Method
e consider the regularizing minimization problem

min J0�n� ª
1

2
�Kn − d�2 +

�

2
�Dn,n� �5�

nder the constraint l�n�u, where �
0 is to be as-
igned and D is a positive (semi)definite operator. Recall
hat a positive definite and (semi)definite operator T re-
ers to �Tx ,x�
0 and �Tx ,x��0, respectively. We solve the
roblem in the feasible set S0ª �n : l�n�u�.
Using the inner product, the objective functional can be

ewritten as a simple quadratic form

J0�n� ª
1

2
��K*K + �D�n,n� − �d,Kn� +

1

2
�d�2 �6�

ubject to n�S0, where K* is the adjoint of K defined by
x ,Ky�= �K*x ,y�. Note that n is always nonnegative and
pper bounded; therefore, problem (5) is equivalent to

min J�n� ª
1

2
��K*K + �D�n,n� − �d,Kn� �7�

ubject to n�S1ª �n :n�0�.
Thus, the goal of an optimization algorithm is solution
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earch for a point, n*, in S1�F such that the objective
unction J�n� is minimized in addition to satisfying the
et of constraints.

Before generating the algorithm, we explain a few
erms used in solving the quadratic program in Eq. (7).

Feasible point and feasible set: Any point n in F that
atisfies all constraints in S1 is said to be a feasible point.
he set of feasible points is referred to as the feasible re-
ion. If the constraints are inconsistent, then the problem
ill be infeasible (e.g., minimize J�n� subject to n
 l or

u).
Active constraint: The constraint n�S1 is said to be ac-

ive at ñ if ñ lies on the boundary of the feasible region
nd this boundary is formed by the constraints whose in-
ices are members of set S. Set S is referred to as the ac-
ive set. During the search process, some inequality con-
traints may become active, and their indices will also be
ncluded in S.

Working set: The working set Wk is a prediction of the
ctive constraints at the solution; i.e., a subset of the con-
traints in S is imposed as a set of equalities.

An active method is an implicit Newton-type method
or solving the constrained quadratic programming prob-
em (7), which describes a method for identifying a correct
et of active inequality constraints and temporarily giving
p the remaining inequality constraints. Originally, the
ethod was designed for a well-posed quadratic program-
ing problem (e.g., [35–37]). We apply it to an ill-posed

erosol particle size distribution function retrieval prob-
em and solve a regularizing problem.

Given an iterate nk and the working set Wk, we first
eed to test whether nk minimizes the quadratic func-
ional J�n� in the subspace defined by the working set. If
ot, we compute a step s by solving an equality-
onstrained quadratic programming subproblem in which
he constraints corresponding to the working set Wk are
reated as equalities and all other constraints are tempo-
arily ignored. So, given the iteration point nk and the
orking set Wkª �j�S :nk

j =0�, the subproblem in terms of
he step sk=n−nk can be expressed as

min Jsk
�sk + nk� =

1

2
�Gsk,sk� + �gk,sk� + c,

s.t. sk
j = 0, j � Wk �8�

ith G=K*K+�D, gk=Gnk−K*d, and c= 1
2 �Gnk ,nk�

�Knk ,d�. Since c is a constant, at the kth iterative step,
e actually solve the equation

min Q�sk� =
1

2
�Gsk,sk� + �gk,sk�,

s.t. sk
j = 0, j � Wk. �9�

e denote the solution of Eq. (9) by sk
*. Note that the con-

traints in Wk were satisfied at nk; they are also satisfied
t nk+�sk

* for any value �. It is clear that there is a trivial
olution sk

* =0. Therefore, we suppose for the moment that
he optimal sk

* is nonzero. We need to decide how far to
ove along the direction sk

*. The strategy is that if nk
s* is feasible with regard to all constraints, we set n
k k+1
nk+sk
*; otherwise, a line search is made in the direction

k
* to find the best feasible point; i.e., we set nk+1
nk+�ksk

*, where �k is the step size that satisfies

�k ª min	1, min
j�Wk,sk

j 
0

− nk
j

sk
j 
 . �10�

f �k
1 in Eq. (10), then a new working set Wk+1 is con-
tructed by adding one active constraint. This constraint
s defined by the index, say l, that achieves the minimum
n Eq. (10), and this index is added to the active set Wk.
he procedure for adding constraints to Wk is continued
ntil a point nk

* is reached that minimizes the quadratic
unctional over its current working set Wk

*. It is easy to
ecognize that this point is given at the trivial solution

k
j =0 and satisfies the optimality conditions for Eq. (9),

�
j�Wk

*

�j
* = Gnk

* − K*d, �11�

or some vector Lagrangian multiplier �j
*, j�Wk

*.
With the above preparation, we focus on the numerical

rocedure for solving the problem. The first-order neces-
ary condition for Eq. (9) at Wk

* yields

Gsk
* + gk − �

j�Wk
*

�j
* = 0, �12�

sk
*j = 0, j � Wk

* , �13�

�j
* � 0, j � Wk

* . �14�

f we define the multipliers corresponding to the inequal-
ty constraints that are not in the working set to be zero,
hen nk

* and �j
* satisfy the Karush–Kuhn–Tucker (KKT)

onditions for Eq. (7) with the constraint n�S, i.e.,

Gnk
* − K*d − �

j�Wk

�j
* = 0, �15�

nk
*j = 0, j � Wk, �16�

nk
*j � 0, j � S, j � Wk, �17�

nd the multiplier �j
* is adjusted to update the model. If

j
*�0 for all j�Wk, then nk

* is a strict minimizer; other-
ise, if one of the multipliers �j

*
0, the objective func-
ional Q�sk� may be decreased by dropping this constraint;
.e., we remove an index j corresponding to one of the
egative multipliers from the working set and solve a new
ubproblem (9) for the new step.

Based on the above preparation, the regularizing active
et algorithm for the aerosol particle size distribution
unction retrieval problem is given as follows:

Algorithm 3.1 (a regularizing active set algorithm).

Step 1. Compute a feasible starting point n0; set W0 to
be a subset of the active constraints at n0; give the ini-
tial regularization parameter �0
0 and the positive
(semi)definite matrix D; set kª0 and compute G
=K*K+�D.
Step 2. Solve Eq. (9) to find sk; If sk�0, GOTO Step 3;
Otherwise, GOTO Step 4.
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Step 3. Compute �k from Eq. (10); Set nk+1=nk+�ksk; If
�k=1, GOTO Step 5; Otherwise, find l�Wk such that
nk

l +�ksk
l =0 and set WkªWk� �l�;

Step 4. Compute the Lagrangian multipliers �k
j that

satisfy Eq. (11); set Wk
* =Wk; If �k

j �0 for all j�Wk,
STOP; output the solution n*=nk; Otherwise, set j
=argminj�Wk

�k
j ; nk+1=nk; set WkªWk\ �j�; GOTO Step

5;
Step 5. Set Wk+1ªWk, kªk+1 and update regulariza-
tion parameter �k; GOTO Step 2.

In Step 1, the computation of G=K*K+�D is not neces-
ary if the solution of Eq. (9) is by an iterative method,
ay, the conjugate gradient method (see Appendix B),
ince only matrix–vector multiplication is performed. The
umerical procedure for solving Eq. (9) is given in Appen-
ix B.
Remark. Note that our model is formulated in a regu-

arizing form and that the object functional J�n� is strictly
onvex for proper choice of D and �; therefore, it is indeed
regularizing algorithm with active set solution. Conver-

ence can be shown to follow similarly to the proof of the
ell-posed case (see [35–37]).

. Choosing the Scale Matrix D and the Regularization
arameter �
o ensure the convexity of the quadratic programming
roblem (7) and (9), it is necessary to choose the appropri-
te regularization parameter � and the scale matrix D.
here are several ways to choose the matrix D; however,

t is pointed out in [12] that the following form of D pos-
esses good numerical stability:

D = �
1 +

1
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−
1
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d� = o� + � � rand�size�o���,

here � is the noise level in (0, 1) and rand�size�o��� is the
aussian random noise with the same size as o�.
The precision of the approximation is characterized by

he root mean-square error

rmse =� 1

m�
i=1

m ��comp��i� − �meas��i��2

��comp��i��2 ,

hich describes the average relative deviation of the re-
rieved signals from the true signals. Here �comp refers to
he retrieved signals and �meas refers to the measured sig-
als.
In our example, the size distribution function ntrue�r� is

iven by (see [24])

ntrue�r� = 10.5r−3.5 exp�− 10−12r−2�.

he particle size radius interval of interest is �0.1,2� �m.
he distribution function corresponds to a rapidly chang-

ng function h�r� times a slowly varying function f�r�.
ince most measurements of the continental aerosol par-
icle size distribution reveal that these functions follow a
unge distribution (see [39,40])

h�r� = Cr−��*+1�,

here �* is a shaping constant with typical values in the
ange 2.0–4.0; therefore, it is reasonable to use an h�r� of
unge type as the weighting factor of f�r�. In this work, we
hoose �*=3 and f�r�=10.5r1/2 exp�−10−12r−2�. The form of
his size distribution function is similar to the one given
y [15], where a rapidly changing function h�r�=Cr−3 can
e identified, but it is more similar to a Junge distribution
or r�0.1 �m. One can also generate other particle size

Fig. 1. Input and results retrieved with our inversion meth
istributions and compare the reconstruction with the in-
ut. The algorithm works well.
Now we give specifications of the initial input values in

lgorithms 3.1 and B.1 (Appendix B) for our theoretical
imulation: the initial regularization parameter �0=0.5
nd the factors of proportionality �=0.5; then each �k is
teratively calculated by the iteration formula given in
ubsection 3.B; n� 0 is a vector with components all equal-

ng 0.1; W0 is chosen by the procedure in Appendix B; the
umber of discretization nodes is N=200. In matrix D,
r= �2−0.1� / �N−1� is the step size of the grids in �a ,b�.
First, the complex refractive index � is assumed to be

.45−0.00i. Then we invert the same data, supposing that
has an imaginary part. The complex refractive index �

s assumed to be 1.45−0.03i, 1.50−0.00i, and 1.50−0.02i.
umerical illustrations are plotted in Figs. 1–3 with noise

evels �=0.005, 0.01, 0.05 for the different complex refrac-
ive indices, respectively. Values of rmse for different
oise levels and different complex refractive indices are
iven in Table 1. It can be clearly seen from Table 1 that
mse is of the order of O�10−5� to O�10−6�, which is smaller
han that from [24], where rmse values for different noise
evels and different complex refractive indices are of the
rder of O�10−4�.

Our computer simulation indicates that our method is
ot too affected by variation of the complex refractive in-
ex and noise. The results are comparable with or better
han those from [24], where a regularizing damped
auss–Newton method is used. Therefore we conclude

hat our method is stable for retrieving aerosol particle
ize distribution functions.

. Discussion of Numerical Results
n this subsection, we choose the ground-based data mea-
ured by the CE 318 Sun photometer (for illustration of

error level �=0.005 and different complex refractive indices.
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he device, experimental site, and instrument specifica-
ions, please refer to [12]) to test the feasibility of the pro-
osed algorithm. We performed successive in situ experi-
ents using the CE 318 from October 17–31, 2005. The
eteorological data are provided by the Ying Tan Agricul-

ural Ecological Station of CERN (Chinese Ecosystem Re-
earch Network).

In this numerical experiment, several days chosen dur-
ng October 17–31 are used for aerosol inversion. The par-
icle size range �0.1,10� �m is examined. For an illustra-

Fig. 2. Input and results retrieved with our inversion meth

Fig. 3. Input and results retrieved with our inversion meth
ion of the air mass history, AOT, and meteorological
escription, we refer to [24]. By examination of the AOT
alues in the morning and afternoon on October 17–31,
e found that the magnitudes of AOT values on October
7 and 18 are abnormally high. Hence they may not truly
eflect the aerosol distribution, and we choose data for
ther days in this study.

The composition of the atmospheric aerosols from Yin
an consists of both small and large particles. Both the
cattering and the absorption of the particles play a major

error level �=0.01 and different complex refractive indices.

error level �=0.05 and different complex refractive indices.
od for
od for
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art. Therefore, a complex refractive index value of �
1.50−0.095i was used to perform the inversion (see

24]). For theory and methods for determining a complex
efractive index �, we refer to [41–43] and the references
herein for further information. Now we specify initial in-
ut values in Algorithms 3.1 and B.1 for our numerical
imulations: all of the initializations are the same as that
n the synthetic simulation, except that in matrix D, hr
�10−0.1� / �N−1� is the step size of the grids in [0.1,10].
The size distribution functions
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L�x,�� = Q�x� − �T�Ax − b�. �A12�

he KKT conditions for Eqs. (A10) and (A11) are given by

�G − AT

A 0 ��x*

�*� = �p

b� . �A13�

The above results are true for nonnegative constraints
�0 and equality constraints x=0.

PPENDIX B: INSTRUCTIONS ON
MPLEMENTING THE REGULARIZING
CTIVE SET ALGORITHM

o use the algorithms described in this paper, we want to
ention some procedures and subroutines. We consider

he minimization problem

min J�n�, s.t. n � S. �B1�

�n� is a nonlinear function, given in Eq. (7), S= �n :n
0�. At the kth iteration, the search direction sk is com-

uted from

min Q�sk�, s.t. sk
j = 0, j � Wk. �B2�

�sk� is a nonlinear function, given in Eq. (9). Then nk+1
nk+�ksk. The gradient of Q�sk� is denoted gradk�Q�
Gsk+gk.
Initialization for choosing W0. The initial working set
0 is related to the initial point n0. Since the constraint is

onnegative, therefore the components of W0 can be cho-
en as i if the ith component of n0 equals zero, and as
ero, otherwise. This means that the ith constraint of W0
s active. The index i is from 1 to N.

Solving quadratic problem (9). Since we are interested
n finding the feasible direction sk, it is unnecessary to
olve Eq. (9) accurately. We apply a feasible direction of
escent method with conjugate gradient solution. First,
e address the basic concept and procedures of feasible
irection of descent methods.
The fundamental concept of feasible direction methods

s that of the feasible direction of descent. If n�S, then
�0 is called a feasible direction of descent for n if there
xists �upper such that for all �� �0,�upper� the following
wo properties hold: (1) n+�s�S, (2) J�n+�s�
J�n�.
ote that condition (2) is equivalent to requiring that

rad�J�Ts
0.
The basic steps in feasible direction methods involve

olving a nonlinear programming subproblem to find the
irection vector and then finding the step size along this
irection by performing a constrained one-dimensional
ine search. After updating the current point, the above
teps are repeated until the termination criterion is sat-
sfied.

Based on the above comments, the feasible direction of
q. (9) is the vector in null space. There are several ways

or solving the nonlinear programming subproblem, say,
he steepest descent method, conjugate gradient method,
nd Newton and quasi-Newton method [35]. Because the
odel is quadratic, we apply the conjugate gradient
ethod, which is fast and efficient.
Algorithm B.1. (Feasible conjugate gradient algorithm).
Step 1 Input s0 (such that n0�S); Compute grad0�Q�
ªGs0+g0 and such that grad0�Q� is a feasible direction.
Step 2 If �grad0�Q����, output s*=s0, STOP; Other-
wise, set z0ª−grad0�Q�,

�0 ª z0
Tz0 and set k ª 1.

Step 3 Compute the next iteration points:

�k ª �k−1/�sk−1
T �Gsk−1��,

sk ª sk−1 + �kzk−1,

gradk�Q� ª gradk−1�Q� + �kGsk�such that gradk�Q�

is a feasible direction�,

�k ª gradk�Q�T gradk�Q�,

�k ª �k/�k−1,

zk ª − gradk−1�Q� + �kzk−1.

Step 4 If �gradk�Q���� or k exceeds the maximum it-
erative steps, output mk, STOP; Otherwise, set k
ªk+1, GOTO Step 3.

In our calculation, we choose the initial values such
hat s0 is a vector with components all equaling 0.1, �
1.0�10−8. With the above instructions, users can com-
ine Algorithms 3.1 and B.1 and repeat the experiment
asily.
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