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The theory of synchrotron radiation (SR) has been well understood and
published. We study the numerical methods for the reconstruction of the spectral
distribution function of SR by measurement of the attenuation of the SR energy
spectrum. The reconstruction of the spectral distribution function of SR is an
ill-posed integral operator equation of the first kind. Therefore, how to overcome
the ill-posedness is a major task in numerical computation. We study the
projected gradient methods and propose a non-monotone decreasing algorithm,
which is called the projected Barzilai-Borwein (PBB) method. The feasibility of
the method is studied in detail by using a hypothetical SR spectrum. The applied
results of the spectrum of 4W1B beamline (an unfocused X-ray monochromator
beamline with 4 mrad (milliradian) of horizontal acceptance which is extracted



Some methods, such as monochromatization, detectors with energy resolution and
attenuation filters, have been developed to measure the X-ray spectrum. But each of these
methods has its own shortcomings. For the monochromatization method, the energy range
of the monochromator is limited and the real diffraction efficiency of the crystal is hard to
confirm, which makes an exact calculation unfeasible. Another common method is to
measure directly by solid detector with energy resolution. In order to avoid the detector
becoming saturated, some kind of scatterer is always needed. This method overcomes the
problem of energy limitation, but the complex scattering problem and the detector
response have to be taken into account.

The conventional X-ray attenuation experiments were done by adding separated
filtrations with different thickness in the light path. It is hard to reconstruct the spectral
distribution accurately because only a few discrete data can be collected by this method. In
order to obtain enough data easily, we adopt a wedged filtration. The filtration was driven
by a step motor and at the same time its thickness was changed. Experiments were done at
4W1B beamline in the Beijing Synchrotron Radiation Facility (BSRF). SR was extracted
at the straight section of 4W1 of the BSRF with an electromagnetic wiggler. Details of our
experimental setup, and experimental geometry and components have already been given
in [4]. The principle of our experiment is the detection of the attenuation of SR light and
solving an inverse problem.

Attenuation filter is a simple method in experiment. But reconstructing the real
spectrum is a difficult task because it requires an ill-posed inverse problem to be solved.
The earliest method was an analytical approach using a Laplace transform for
representing the X-ray spectral distributions in a function form [5]. Later, various
techniques for both direct computation and iterative computation were developed [6…12],
however the computational results of those methods are not satisfactory. In inversion
theory, regularization methods play an important role in stably recovering the unknowns
given that the observations are known, which has been applied successfully in a lot of fields
such as geophysics, computerized tomography, signal and image processing [13] and
Laplace transform [14,15]. It is a powerful tool for solving operator equations of the first
kind. Recently, we have applied the Tikhonov regularization method under some
conditions to reconstruct the SR spectra radiation function and obtain satisfactory results.
However, this method still relies heavily on the proper choice of the regularization
parameter and the stabilizer [4]. It is not convenient sometimes, for example, ifa priori
information about the noise level is unavailable. Therefore, more robust algorithms
deserve to be studied. We study gradient methods in this article, which correspond to some
kind of regularization if proper controlling of the iterations is done. Particularly, we study
the projected Barzilai-Borwein (PBB) method in a convex and closed feasible set and apply
it to rebuild the spectrum of SR. The method originates from solving a well-posed
non-linear programming problem [16], but it is the first time it has been used for solving an
ill-posed SR spectra distribution function reconstruction problem. In addition, a projec-
tion technique for box-constrained optimization of this problem is presented. These
results, which in essence are the main contributions of the article, are the pivotal points for
the effectiveness of the numerical procedure based on the projected gradient method in BB
type analysed in this article. Numerical experiments on both theoretical and practical
simulations are performed.

The structure of the article is as follows: in Section 2, we outline the model as an
integral operator equation of the first kind; in Section 3, we first briefly introduce the
regularization method, then describe the projected gradient methods and propose a PBB
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method in detail; in Section 4, numerical experiments are given for both theoretical and
practical simulations. Finally in Section 5, some concluding remarks are given.

2. Mathematical model: ill-posed integral equations of the first kind

When SR with spectrum distribution f(E) traverse the filtration, the intensity is attenuated.
The signal obtained by the second ion chamber is

IðdÞ ¼a
Z E1

E0

f ðEÞe� � ðEÞdE½1 � e� � gðEÞD�dE, ð2:1Þ

whereE is the energy of the light,� (E) is the absorption coefficient of the filtration, � g(E)
is the absorption coefficient of the gas filled in the chamber,d is the thickness of the
filtration, D is the length of the ion chamber,E0 and E1 are, respectively, the minimum and
maximum photon energy of the incident light. Here,a¼Gq/" ion. G is the gain of the
amplifier, q is the electron charge," ion is the ionization energy of the gas filled in the
chamber.

Considering the wedged filtration and the width of the beam, Equation (2.1) has to be
corrected, i.e.

IðdÞ ¼a
Z E1

E0

f ðEÞ½1 � e� � ðEÞwtanð� Þ�
� ðEÞwtanð� Þ

E½1 � e� � gðEÞD�e� � ðEÞd dE, ð2:2Þ

where w is the width of the light, � is the apex angle of the filtration.
By variable replacement, Equation (2.2) can be rewritten as

IðdÞ ¼a
Z � 1

� 0

gð� Þe� � d d� , ð2:3Þ

where

gð� Þ ¼
f ½Eð� Þ�Eð� Þe� � gEð� ÞD½1 � e� � wtanð� Þ�

� wtanð� Þ
dE
d�

:

It is clear that (2.3) is a Laplace integral equation, which is a special operator equation
of the first kind, hence the ill-posed nature it inherits. This means that even if a least
squares solution with minimal norm in L2 space exists, it may oscillate severely with the
perturbation of the observation. So, direct solution of (2.3) or finding its least square
errors (LSE) solution should be avoided. To see this, first we formulate the problem in the
Hilbert space:

L : F ! R

ðLgÞð� Þ ¼IðdÞ,

whereF and R are two Hilbert spaces, whose norm is induced by inner product andg2 F ,
I 2 R .

If we denote the singular system ofL by {� k; uk, vk}, then the singular value expansion
of L can be expressed as

Luk ¼ � kvk, L � vk ¼ � kuk
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and

Lg ¼
X1

k¼1

� kðg, ukÞvk, g 2 F ,

L � I ¼
X1

k¼1

� kðI , vkÞuk, I 2 R :

where L � is the adjoint of L. With the singular value expansion of the operatorL, the
solution of the LSE problem can be approximated by

glse ¼ LyI ¼ ðL� LÞyL � I ¼
X1

k¼1

ðI , vkÞ
� k

uk,

where Ly is the Moore…Penrose generalized inverse.
Note that L is an ill-posed operator, henceLy is unbounded if the dimension of the

range of the observation space is infinity. This indicates thatglse is very sensitive to the
observations inR and the instability occurs.

3. Numerical methodology

3.1. Regularization methods

Due to the ill-posedness of (2.3), some kind of regularization technique must be involved
to suppress the ill-posed characteristic [14,15,17,18]. One may readily see that a proper
filter function to suppress the instability induced by the small singular values and noise
data should be considered. If we choose the filter function to have the terms containing
small singular values truncated, then we obtain the truncated singular value decomposition
[18]. The Tikhonov regularization technique is another choice of filter function.
The standard Tikhonov regularization refers to solving an unconstrained minimization
problem [15,19,20]

kLg � Ik2
L2

þ � � ðgÞ ! minimization, ð3:1Þ

where � (g) is called the stabilizer, and the functional� (�) can be defined by users. For
example,� (�cho4-43-234.2(th-53i56.7(filt1ization)-4 -1.223run.5ise TD
[(The)-422-42u2.5(to)n)-2(as 1 Tf
16.9675 2-23382 TD
(6472
/F2 1 Tf
074894 0 0 6.9738 204.9448 2215669 1-3777472
/F2 1 Tf
0.9626 0 0 9.9626 215.3196 2523669 1-99.9herem0 TD
7 Tmiza¼ 1 Tf
0.3301 0 TD
2.2816 Tcimiza 1 Tf
454894 0 0 6.9738 204.9448 ice7763 1-3777472
/F2�1 Tf
0.3301 0 0 9.9626 215.3196 ,199149 1-99.9herem0a 1 Tf
454894 0 T88
[2816 T7 1 Tf
0.9902 0 TD
(I)Tj
/F5�1 Tf
0.3357 0 T55
[2816 T7E1 Tf
454894 0 T6715)Tj
/F2 1 Tf 0 6.9738 204.9448 -37218891y)-001ampme, 1 Tf
0.7739 0 TD
2k



3.2. Projected gradient methods

Equation (2.3) is a bounded Laplace transform for our detection system. Numerically,
rewriting Equation (2.3) in discrete form yields y ¼Kx. In which, y and x are column
vectors with the dimensions ofm and n, respectively, andK is an m� n matrix. They are
defined as follows:

y ¼

Iðd1Þ

..

.

IðdmÞ

2

6
6
4

3

7
7
5 , x ¼

gð� 1Þ

..

.

gð� nÞ

2

6
6
4

3

7
7
5 , K ¼ a� �

e� � 1d1 . . . e� � nd1

..

. ..
. ..

.

e� � 1dm . . . e� � ndm

2

6
4

3

7
5 : ð3:2Þ

Gradient methods are used for functional minimization. Every one of them uses
an iterative formula that contains the gradient of the functional to find the minimum,
hence the name •gradient methods•. The problem is defined by the functional to be
minimized and the initial approximation, the starting point for the iteration. The method
stops when the maximum number of iterations is exceeded or the requested accuracy is
obtained for the solution. More than one method can be used for the same problem. Now
we turn to the minimization of a function of n variables:

J ½x� :¼
1
2

xTAx � bTx, ð3:3Þ

where A ¼KTK, b¼KTy. Let xk be the k-th iterate and gradk[J] the gradient of J at xk,
given by

gradk½J � ¼ Axk � b:

A gradient method for solving (3.3) calculates the next point from

xkþ 1 ¼ xk þ � kdk,

wheredk ¼ � gradk[J ] is the negative gradient direction,� k is the stepsize that depends on
the method used. For example, for the classical steepest descent (SD) method [21], the
stepsize� k is chosen such thatJ [x] is minimized along the linexk � � kgradk[J ], that is,

� SD
k ¼ argmin� 4 0J ½xk � � gradk½J ��,

which leads to the solution

� SD
k ¼

gradk½J �Tgradk½J �

gradk½J �TA gradk½J �
:

Theoretically, the solution of problem (2.3) is bounded and positive, so is problem
(3.2). That is to say, the solution x belongs to a convex and closed set� ¼{x 2 Rn :
l � x � u, l � 0, u5 1 }, and l, u are all vectors in Rn. Therefore, we actually solve
a constrained optimization problem:

min J ½x� :¼
1
2

xTAx � bTx,

subject to x 2 � : ð3:4Þ

Convexity of � makes it possible to use the orthogonal projection onto� , P� : Rn ! � ,
for obtaining feasible directions which are also descent ones; namely a step is taken from
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xk in the direction of � gradk[J ], the resulting vector is projected onto� , and the direction
from xk to this projection has the above mentioned properties. Ideally, the projectionP�

should be chosen such that

P� ðxÞ ¼argminzkx � zk:

For our problems with l � 0 and u5 1 , we choose the projection operator on� as

P� ðxÞ ¼maxðx, 0Þ

and the i-th component of P� can be expressed simply as

Pi
� ðxÞ ¼

xi if xi � 0,

0 otherwise:

�

Assume that the current iterate xk is feasible, then the next iteration point can be
obtained by

xkþ 1 ¼ P� ðxk � � kgradk½J �Þ: ð3:5Þ

We outline the projected gradient algorithm as follows:

Algorithm 1 (Projected gradient algorithm)

. Initialization: Give x0 2 � and the stopping tolerance� ;

. Iteration: If kgradk[J ]k � � , then stop. Otherwise, solve Equation (3.5) to obtain
the next iteratexkþ 1.

Shortcomings of this method are that it becomes slow as the iterations proceed, and
zigzagging phenomenon occurs [21]. So, it is not applicable in practical applications.

Another iterative projected gradient method is the projected Landweber method, which
is proposed by Eicke [22], for solving convexly constrained ill-posed problems in the Hilbert
space. This method is also addressed in [23]. The iteration formula reads as follows:

xkþ 1 ¼ P� xk þ ! KTy � KTKx
� �� �

¼ P� ðxk þ ! ðb � AxkÞÞ

¼ P� ðxk � ! gradk½J �Þ ð3:6Þ

where ! 2 (0, kAk� 2), P� (�) is the projection operator defined as above. The projected
Landweber method is an iterative method which can be used for approximating the
solutions of the image restoration problems. Its convergence and regularization properties
have been investigated in [22]. However, a well-known fact is the practical difficulty of the
method, i.e. the convergence is too slow. Too many iterations are required to obtain the
best approximation. Therefore, if one wants to use the method, the acceleration technique
must be considered. But how to accelerate remains an important issue.

Recently, a new method for the choice of stepsize� k, called the BB method was
proposed by Barzilai and Borwein [16] for solving unconstrained quadratic programming
problems. Applications of the method to a digital image restoration problem are reported
in [24]. This method is based on the investigation of the quasi-Newton equation of
Equation (3.3)

A� xk� 1 ¼ � gradk� 1½J �,
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where� xk� 1 ¼xk � xk� 1, � gradk� 1[J ] ¼gradk[J ]…gradk� 1[J ] and minimizing the norm of
the residual � gradk� 1[J ] � A� xk� 1 for A approximated by � � 1I (� 4 0, I is the identity
matrix). This yields two choices of the stepsize� k:

� BB1
k ¼

gradk� 1½J �Tgradk� 1½J �

gradk� 1k� 1



not decrease monotonically due to the non-monotonicity of the PBB method.
The numerical results show that the algorithm is successful when the data have no noise.

In order to test the anti-noise capability of the algorithm, a Gaussian random white
noise in [� 1, 1] with a high level 0.05 (i.e. 0.05 times the Gaussian random white noise) was
added to the simulated attenuation curve. The tolerance" ¼1.0� 10� 6 is used in this case.
In our simulation process, the effects of the noise to the simulated attenuation curve can be
seen clearly in the partial enlarged detail. Figure 2(b) (solid line) shows the object
spectrum.

The numerical inversion results from the noisy attenuation curve are shown in
Figure 2(b) (circles). The errors between the true and the computational results are shown in
Figure 2(c). The error limit is5 0.032%. It indicates that the numerical inversion results and
the object distribution are very similar even for high noise levels. This shows that our
algorithm is stable and reliable. The behaviour of the relative error of the PBB method in
each iteration is shown in Figure 2(d). Again, it can be seen from Figure 2(d) that the relative
error does not decrease monotonically due to the non-monotonicity of the PBB method.

0 1 2 3 4 5 6 7 8 9 10
102

101

100

101

102

d (mm)

A
tte

nu
at

io
n 

si
gn

al

0 0.5 1 1.5 2 2.5 3 3.5

× 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E (eV)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 d

is
tr

ib
ut

io
n 

va
lu

e(
b)

00.5 1

1.5

22.533.5

× 104

10.500.51
1.5

× 10�6

E (eV)

R
el

at
iv

e 
er

ro
r

10

0

10

1

10

2

103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E (eV)

R
el

at
iv

e 
er

ro
r 

in
 e

ac
h 

pr
oj

ec
te

d 
B

B
 s

te
p

(a)

(d)(c)

Figure 1. (a) The simulated attenuation curve without noise. (b) The solid line is the objectdistribution, the circles are the numerical inversion results from the unperturbed simulatedattenuation data. (c) The relative error between the object spectrum and the numerical inversionresults from the simulated attenuation data without noise. (d) The behaviour of the relative error forthe PBB method.
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4.2. Practical SR spectral distribution function recovery

Next, we examine our algorithm for practical observation data. All experiments were done
at 4W1B beamline in BSRF (see [4] for details). In our experiments, the thickness of the tip
of the filtration is about 0.25 mm. It means that SR will be absorbed by an Al foil of
0.25 mm before we measure it. Therefore, in numerical comparison with the theoretical
values, an 0.25 mm-thick Al is added. In our numerical tests, all curves are normalized by
the maximum.

In our calculation, 1000 points were chosen from the measurements. To ensure
convergence and sufficient iterations, the tolerance" ¼2.5� 10� 4 is used in this case.
The inversion results are shown in Figure 3(a). The dotted line represents the numerical
inversion results by using experiment data. The solid line denotes the theoretical
distribution of the light in the centre of the cross section. Comparing with
theoretical results and the calculation results, we find that our algorithm is believable
for measured data.
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In order to check the reliability of the inversion algorithm, we have collected the data
with 35 mm Cu in the light path. In this case, the tolerance is chosen as" ¼1.0� 10� 4.
The spectrum with Cu absorption was reconstructed by the same algorithm. The result is
shown in Figure 3(b). The solid line is the theoretical result of the white light absorbed by
Cu and the dotted line is the numerical inversion results. We can clearly see the position of
the absorption edge of Cu can be reconstructed. This indicates that the numerical results of
the spectrum absorbed by Cu are reliable. Furthermore, it illustrates that the numerical
results of white light are reliable.

Both the theoretical simulation and the inversion by measurement data reveal the fact
that our method can stably and efficiently recover the SR spectra distribution function.
Therefore, we conclude that our method is applicable for the inversion in the recovery of
the SR spectra distribution function.

5. Concluding remarks

This article introduces a simple experimental method and a reliable projected gradient
method to measure and reconstruct the spectrum of SR. The inversion algorithm was
tested by theoretical spectral distribution. Several practical measurements were carried out
at 4W1B beamline in BSRF, and the numerical results are illustrated to be reliable. To deal
with the ill-posed problem described in this article, we propose projected gradient
methods, particularly a PBB method for computing the non-monotone step in each
iteration. Numerical performance reveals its good stability. Therefore, PBB method for
ill-posed SR spectrum reconstruction problem with non-negative constraints corresponds



the reliability of reconstructed spectrum. This method can be used to measure the
spectrum of X-ray.

Acknowledgements
We would like to express our sincere thanks to the anonymous referees• valuable suggestions which
greatly help us improve the quality of the article. The research is sponsored by China National
Natural Science Foundation 10501051 and partially supported by NSFC-RFBR project
10811120017.

References

[1] F.J. Himpsel and I. Lindau, Photoemission and photoelectron spectra, in The Optics
Encyclopedia, Vol. 4, Th. G. Brown, K. Creath, H. Kogelnik, M.A. Kriss, J. Schmit, and
M.J. Weber, eds., Wiley-VCH, Weinheim, 2004, pp. 2343…2370.

[2] M. Procop and F. Scholze,Synchrotron radiation for the characterization of energy dispersive
X-ray spectrometers, Microsc. Microanal. 10(Suppl. S02) (2004), pp. 98…99.

[3] M. Servidori, Determination by high-resolution X-ray diffraction of shape, size and lateral
separation of buried empty channels in silicon-on-nothing architectures, J. Appl. Cryst. 40 (2007),
pp. 338…343.

[4] Y.H. Du, Y.F. Wang, W. Hua, Y.Y. Huang, and T.D. Hu, Measurement of synchrotron
radiation spectra using combined attenuation method and regularized inversion, Nucl. Instrum.
Meth. Phys. Res. A 565 (2006), pp. 855…860.

[5] L. Silverstein,Determination of the spectral composition of X-ray radiation from filtration data, J.
Opt. Soc. Amer. 22 (1932), pp. 265…280.

[6] G.E. Bell, Spectral distribution in the continuous X-ray spectrum and the specification of X-ray
quality, Brit. J. Radiol. 9 (1936), pp. 680…688.

[7] J.R. Greening, The derivation of approximate X-ray spectral distributions and an analysis of
X-ray •quality• specifications, Brit. J. Radiol. 36 (1963), pp. 363…371.

[8] H.M. Kramer and H. Von Seggern, The determination of X-ray spectra from attenuation data,
Nucl. Instr. and Meth. 213 (1983), p. 373.

[9] B.W. Soole,A method of X-ray attenuation analysis for approximating the intensity distribution at
its point of origin of bremsstrahlung excited in a thick target by incident electrons of constant
medium energy, Phys. Med. Biol. 21 (1976), pp. 369…389.

[10] S. Tominaga,The estimation of x-ray spectral distribution from attenuation data by means of
iterative computation, Nucl. Instr. Meth. 192 (1982), pp. 415…421.

[11] „„, A singular-value decomposition approach to X-ray spectral estimation from attenuation data,
Nucl. Instr. Meth. A 243 (1986), pp. 530…538.

[12] J.W. Twidell, The determination of X-ray spectra using attenuation measurements and a computer
program, Phys. Med. Biol. 15 (1970), pp. 529…539.

[13] Y.F. Wang, Computational Methods for Inverse Problems and Their Applications, Higher
Education Press, Beijing, 2007.

[14] Y.F. Wang and T.Y. Xiao, Fast realization algorithms for determinig regularization parameters
in linear inverse problems, Inverse Probl. 17 (2001), pp. 281…291.

[15] T.Y. Xiao, S.G. Yu, and Y.F. Wang, Numerical Methods for Inverse Problems, Science Press,
Beijing, 2003.

[16] J. Barzilai and J. Borwein,Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988),
pp. 141…148.

[17] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer,
Dordrecht, 1996.

Inverse Problems in Science and Engineering 185

D
ow

nl
oa

de
d 

B
y:

 [W
an

g,
 Y

an
fe

i] 
A

t: 
02

:3
4 

11
 F

eb
ru

ar
y 

20
09



[18] C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
[19] A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-posed Problems, John Wiley and Sons,

New York, 1977.
[20] A.N. Tikhonov et al., Numerical Methods for the Solution of Ill-posed Problems, Kluwer

Academic Publishers, Dordrecht, 1995.
[21] Y.X. Yuan, Numerical Methods for Nonliear Programming, Shanghai Science and Technology

Publication, Shanghai, 1993.
[22] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space,

Num. Funct. Anal. Opt. 13 (1992), pp. 413…429.
[23] M. Bertero and P. Boccacci,Introduction to Inverse Problems in Imaging, Institute of Physics

Publishing, Philadelphia, 1998.
[24] Y.F. Wang and S.Q. Ma, Projected barzilai-borwein methods for large scale nonnegative image

restorations, Inverse Probl. Sci. Eng. 15 (2007), pp. 559…583.
[25] Y.H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained

quadratic programming, University of Dundee Report NA/215, 2003.
[26] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,

IMA J. Numer. Anal. 13 (1993), pp. 321…326.
[27] C.T. Chantler, Theoretical form factor, attenuation and scattering tabulation for z¼1� 92 from

e¼1� 10 ev to e¼0.4� 1.0 mev, J. Phys. Chem. Ref. Data 24 (1995), pp. 71…643.

186 Y. Wang et al.

D
ow

nl
oa

de
d 

B
y:

 [W
an

g,
 Y

an
fe

i] 
A

t: 
02

:3
4 

11
 F

eb
ru

ar
y 

20
09




